Metodi Quantitativi per Economia, Finanza e Management Lezione n°10.

Slides:



Advertisements
Presentazioni simili
Tecniche di analisi dei dati e impostazione dell’attività sperimentale
Advertisements

Metodi Quantitativi per Economia, Finanza e Management Lezioni n° 7-8
Come organizzare i dati per un'analisi statistica al computer?
Tecniche di analisi dei dati e impostazione dellattività sperimentale Relazioni tra variabili: Correlazione e Regressione.
Analisi preliminari dei dati
Regressione lineare Esercitazione 24/01/04.
C – Indici di Asimmetria e Curtosi
Dipartimento di Economia
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 11
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n° 8.
Analisi fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 10.
Regressione logistica
Metodi Quantitativi per Economia, Finanza e Management Lezione n°8
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 11.
redditività var. continua classi di redditività ( < 0 ; >= 0)
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°7.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°8.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°8.
STATISTICA 6.0: REGRESSIONE LINEARE
IL MODELLO DI REGRESSIONE MULTIPLA
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE MULTIPLA: test sui parametri e scelta del modello (parte 3) Per effettuare test di qualsiasi natura è necessaria.
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE MULTIPLA (parte 1)
MODELLO DI REGRESSIONE LINEARE MULTIPLA
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 9.
Linee guida per la Chimica Analitica Statistica chemiometrica
Presa DATI e analisi dati esperimento pendolo
Analisi della varianza
Dall’analisi Fattoriale alla regressione lineare
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°6.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°3 Le distribuzioni di frequenza e le misure di sintesi univariate.
Regressione logistica
STATISTICA PER LE DECISIONI DI MARKETING
Statistica economica (6 CFU)
Esercizio Regressione DATI Per un campione casuale di 82 clienti di un'insegna della GDO, sono disponibili le seguenti variabili, riferite ad un mese di.
DATA MINING PER IL MARKETING
LABORATORIO DI ANALISI AVANZATA DEI DATI Andrea Cerioli Sito web del corso ESTENSIONI DEL MODELLO DI REGRESSIONE LINEARE MULTIPLA.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°11 Regressione lineare multipla: Analisi di influenza. Case Study.
Dall’Analisi Fattoriale alla Regressione Lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n° 11.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°4
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9 Regressione lineare multipla: la stima del modello e la sua valutazione, metodi automatici.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°13 Regressione Logistica: La stima e l’interpretazione del del modello.
Regressione logistica
Lezione B.10 Regressione e inferenza: il modello lineare
Un insieme limitato di misure permette di calcolare soltanto i valori di media e deviazione standard del campione, ed s. E’ però possibile valutare.
Strumenti statistici in Excell
redditività var. continua classi di redditività ( < 0 ; >= 0)
Metodi Quantitativi per Economia, Finanza e Management Lezione n°10 Regressione lineare multipla: la valutazione del modello, metodi automatici di selezione.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°7.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°4
Regressione lineare - Esercizi
Regressione lineare - Esercizi Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°9.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°8.
Esercizio Regressione DATI Per un campione casuale di 82 clienti di un'insegna della GDO, sono disponibili le seguenti variabili, riferite ad un mese di.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 9.
Altri concetti sulla regressione. Multicollinearità Varianza comune fra le VI: se è molto elevata produce stime instabili. Ci sono degli indici per indicare.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°13.
DATA MINING PER IL MARKETING (63 ore) Marco Riani Sito web del corso
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE SEMPLICE
Regressione: approccio matriciale Esempio: Su 25 unità sono stati rilevati i seguenti caratteri Y: libbre di vapore utilizzate in un mese X 1: temperatura.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°10 Regressione lineare multipla: la valutazione del modello, multicollinearità, metodi.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9 Regressione lineare multipla: le ipotesi del modello, la stima del modello.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9 Regressione lineare multipla: le ipotesi del modello, la stima del modello.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9 Regressione lineare multipla: le ipotesi del modello, la stima del modello.
Transcript della presentazione:

Metodi Quantitativi per Economia, Finanza e Management Lezione n°10

Il modello di regressione lineare 1.Introduzione ai modelli di regressione – Case Study 2.Obiettivi 3.Le ipotesi del modello 4.La stima del modello 5.La valutazione del modello 6.Commenti

Indicatori di bontà del Modello Il modello di regressione lineare La stima del modello Y X Y X Y X R-SQUARE=0.7 F con p-value piccolo R-SQUARE=0.7 F con p-value piccolo R-SQUARE=0.7 F con p-value piccolo

OUTLIERS ? INFLUENTI ? Il modello di regressione lineare Lanalisi di Influenza

Osservazione anomala rispetto alla variabilità di Y non attira a sé il modello in maniera significativa OUTLIER Il modello di regressione lineare Lanalisi di Influenza

Osservazione anomala rispetto alla variabilità di Y attira a sé il modello in maniera significativa OUTLIER Il modello di regressione lineare Lanalisi di Influenza

Valutazione dellimpatto delle singole osservazioni osservazioni outlier che creano distorsione nella stima del modello - plot dei residui - plot X/Y osservazioni influenti che contribuiscono in modo sproporzionato alla stima del modello - plot dei residui - statistiche di influenza Il modello di regressione lineare Lanalisi di Influenza

Leverage H: i-esimo elemento della diagonale della matrice di proiezione. misura quanto unosservazione è lontana dal centro dei dati (ma tende a segnalare troppe oss influenti e tratta tutti i regressori nello stesso modo) oss influente se lev H>2*(p+1)/n Distanza di Cook: misura la variazione simultanea dei coefficienti quando unosservazione viene rimossa oss influente se D>1 Il modello di regressione lineare Statistiche di Influenza

Plot delle statistiche di influenza attenzione alle osservazioni nel quadrante in alto a destra D lev H INFLUENTI - DINFLUENTI – SIA D CHE LEVERAGE H INFLUENTI - LEVERAGE H Il modello di regressione lineare Statistiche di Influenza

Il modello di regressione lineare Statistiche di Influenza Root MSE55693R-Square Dependent Mean32431Adj R-Sq Coeff Var Parameter Estimates VariableLabelDFParameter Estimate Standard Error t ValuePr > |t| Intercept <.0001 PAG_ORDPagato in contrassegno <.0001 PAG_MESPagato con rate mensili <.0001 TOT_ORDTotale ordini <.0001 LISTANumero di liste di appartenenza SESSOSesso CENResidenza Centro SUDResidenza Sud <.0001

Il modello di regressione lineare Statistiche di Influenza

Il modello di regressione lineare Statistiche di Influenza DATA REGRESS1 (DROP = COOK H REDD_PRE RES_STUD); SET RESID_0; WHERE COOK < & H < 0.015; PROC REG DATA=REGRESS1; MODEL REDD=PAG_ORD PAG_MES TOT_ORD LISTA SESSO CEN SUD ; PAINT RSTUDENT.> 2 / SYMBOL='O'; PAINT RSTUDENT.<-2 / SYMBOL='O'; PLOT RSTUDENT.*P.; PLOT P.*REDD; PLOT COOKD.*H.; RUN;

Il modello di regressione lineare Statistiche di Influenza

Il modello di regressione lineare Statistiche di Influenza

Il modello di regressione lineare Statistiche di Influenza Root MSE52693R-Square Dependent Mean30935Adj R-Sq Coeff Var Parameter Estimates VariableLabelDFParameter Estimate Standard Error t ValuePr > |t| Intercept <.0001 PAG_ORDPagato in contrassegno <.0001 PAG_MESPagato con rate mensili <.0001 TOT_ORDTotale ordini <.0001 LISTANumero di liste di appartenenza SESSOSesso CENResidenza Centro SUDResidenza Sud <.0001

Si vuole verificare bontà delle stime adattamento del modello ai dati impatto delle singole osservazioni impatto dei regressori Strumenti test statistici indicatori di performance analisi dei residui analisi degli outliers analisi di influenza valutazione dei coefficienti e correlazioni parziali Il modello di regressione lineare La Valutazione del modello

Factor Analysis

If the information is spread among many correlated variables: we may have several different problems. Apparent information; Miss- understanding; Difficulties in the interpretation phase; Robustness of the results; Efficiency of the estimates; Degrees of freedom; ….. Factor Analysis

Quando le variabili considerate sono numerose spesso risultano tra loro correlate => numerosità e correlazione tra variabili porta a difficoltà di analisi Perché sintetizzare? Se linformazione è condivisa tra più variabili correlate tra loro, è ridondante utilizzarle tutte. La sintesi semplifica le analisi successive ma comporta una perdita di informazione, si deve evitare, di perdere informazioni rilevanti.

Factor Analysis

Analisi fattoriale Quando le variabili considerate sono numerose spesso risultano tra loro correlate. Numerosità e correlazione tra variabili porta a difficoltà di analisi => ridurre il numero (semplificando lanalisi) evitando, però, di perdere informazioni rilevanti. LAnalisi Fattoriale è una tecnica statistica multivariata per lanalisi delle correlazioni esistenti tra variabili quantitative. A partire da una matrice di dati : X (nxp), con n osservazioni e p variabili originarie, consente di sintetizzare linformazione in un set ridotto di variabili trasformate (i fattori latenti).

Analisi fattoriale Perché sintetizzare mediante limpiego della tecnica? Se linformazione è dispersa tra più variabili correlate tra loro, le singole variabili faticano da sole a spiegare il fenomeno oggetto di studio, mentre combinate tra loro risultano molto più esplicative. Esempio: lattrattività di una città da cosa è data? Dalle caratteristiche del contesto, dalla struttura demografica della popolazione, dalla qualità della vita, dalla disponibilità di fattori quali capitale, forza lavoro, know-how, spazi, energia, materie prime, infrastrutture, ecc. I fattori latenti sono concetti che abbiamo in mente ma che non possiamo misurare direttamente.