Calcolo delle Probabilità

Slides:



Advertisements
Presentazioni simili
Dr. Marta Giorgetti Esercizi Calcolo combinatorio, spazio degli eventi, probabilità, indipendenza, teorema di Bayes.
Advertisements

Elementi di calcolo delle probabilità
La probabilità nei giochi
La Matematica tra Gioco e Realtà
Esercizi combinatorio 1
Definizione di probabilità, calcolo combinatorio,
Variabili aleatorie discrete e continue
La probabilità.
Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The.
Corsi Abilitanti Speciali Classe 59A III semestre - 3
CALCOLO COMBINATORIO Principio fondamentale del calcolo combinatorio
Bruno Mario Cesana Stefano Calza
Inferenza Statistica Le componenti teoriche dell’Inferenza Statistica sono: la teoria dei campioni la teoria della probabilità la teoria della stima dei.
Definizioni di probabilità
Calcolo combinatorio.
Definizioni Chiamiamo esperimento aleatorio ogni fenomeno del mondo reale alle cui manifestazioni può essere associata una situazione di incertezza. Esempi:
3. Processi Stocastici Un processo stocastico è una funzione del tempo i cui valori x(t) ad ogni istante di tempo t sono v.a. Notazione: X : insieme di.
Metodi Probabilistici, Statistici e Processi Stocastici Università Carlo Cattaneo Emanuele Borgonovo Metodi Probailistici, Statistici e Processi Stocastici.
Marco Riani STATISTICA A – K (60 ore) Marco Riani
Calcolo delle Probabilità terza parte
Torna alla prima pagina Sergio Console Calcolo Combinatorio e cenni di calcolo delle Probabilità Istituzioni di Matematiche Scienze Naturali.
Esempio Ritorniamo al caso illustrato con i diagrammi di Venn e
LA PROBABILITA’.
lezione del 10 aprile 2013 appunti
Impostazione Assiomatica del Calcolo della Probabilità
DEFINIZIONE CLASSICA DI PROBABILITA’
Calcolo delle Probabilità
Il calcolo combinatorio
Lezione 4 Probabilità.
REGOLE DEL CALCOLO DELLE PROBABILITA’
MOLTIPLICAZIONE COMBINATORIA
Una trattazione elementare
Orientamento universitario
La probabilità Schema classico.
Introduzione al calcolo delle probabilità a cura di Maurizio Brizzi (Università di Bologna) BIOSTAT 2013 Asti, 1° luglio 2013.
Calcolo delle Probabilità
1.PROBABILITÀ A. Federico ENEA; Fondazione Ugo Bordoni Scuola estiva di fonetica forense Soriano al Cimino 17 – 21 settembre 2007.
Lancio dadi Analisi probabilità esito somme varie.
Esercizio 1 Da un mazzo di carte da 40 estraggo casualmente e senza reimmissione 3 carte: quante sono le possibili terne? considerate i seguenti eventi:
Giocare con la probabilità
Calcolo delle probabilità Nacci Spagnuolo Audino Calcolo delle probabilità
Esercizi con soluzione
Probabilità ed eventi casuali (Prof. Daniele Baldissin)
Torna alla prima pagina Sergio Console Calcolo delle Probabilità seconda parte Istituzioni di Matematiche Scienze Naturali.
PROBABILITA’.
Impostazione Assiomatica del Calcolo della Probabilità
Calcolo combinatorio e probabilità
Calcolo delle Probabilità
PROBABILITA’ Scienza che studia i fenomeni retti dal caso EVENTO (E): avvenimento che può accadere oppure no 1.certo: se si verifica sempre (es. nel lancio.
Probabilità e Variabili Casuali
Evento: “Fatto o avvenimento che già si è verificato o che può verificarsi ….” Gli eventi di cui ci occuperemo saranno soltanto gli eventi casuali, il.
Master in Neuropsicologia ClinicaElementi di Statistica I 17 maggio / 23 Analisi bivariata Per ogni unità statistica si considerano congiuntamente.
2) PROBABILITA’ La quantificazione della ‘possibilità’ del verificarsi di un evento casuale E è detta probabilità P(E) Definizione classica: P(E) è il.
Spiegazione di alcuni concetti
PROBABILITÀ Corsi Abilitanti Speciali Classe 59A III semestre - 2.
Eventi aleatori Un evento è aleatorio (casuale) quando non si può prevedere con certezza se avverrà o meno I fenomeni (eventi) aleatori sono studiati.
ELEMENTI DI CALCOLO DELLE PROBABILITA’
Probabilità Esercitazioni numeriche del corso di GENETICA AA 2010/2011 LEZIONE N°1.
LA PROBABILITA’.
16) STATISTICA pag.22. Frequenze frequenza assoluta (o frequenza): numero che esprime quante volte un certo valore compare in una rilevazione statistica.
Elementi di calcolo combinatorio e di probabilità. Prof. Ugo Morra Liceo scientifico V. Vecchi di Trani Lezione di potenziamento delle abilità in matematica.
La probabilità matematica
1 DISTRIBUZIONI DI PROBABILITÁ. 2 distribu- zione che permette di calcolare le probabilità degli eventi possibili A tutte le variabili casuali, discrete.
METODI E TECNOLOGIE PER L’INSEGNAMENTO DELLA MATEMATICA Lezione n°17.
LA PROBABILITA’. CHE COS’E’? La probabilità di un evento è il quoziente tra il numero dei casi favorevoli a quell’evento e quello dei casi possibili quando.
ELEMENTI DI CALCOLO DELLE PROBABILITA’. Evento Aleatorio Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado)
1 TEORIA DELLA PROBABILITÁ. 2 Cenni storici i primi approcci alla teoria della probabilità sono della metà del XVII secolo (Pascal, Fermat, Bernoulli)
Probabilità Definizione di probabilità La definizione di probabilità si basa sul concetto di evento, ovvero sul fatto che un determinato esperimento può.
1 ELEMENTI DI CALCOLO COMBINATORIO. 2 Elementi di calcolo combinatorio Si tratta di una serie di tecniche per determinare il numero di elementi di un.
Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento.
Transcript della presentazione:

Calcolo delle Probabilità Istituzioni di Matematiche Scienze Naturali

Introduzione La probabilità si occupa di fenomeni non deterministici Fenomeno deterministico: se l’esperimento è condotto nelle stesse condizioni si trova lo stesso risultato Esempi: Moto di un grave Traiettoria di una pallina in un biliardo Fenomeno non deterministico: anche se gli esperimenti sono condotti nelle stesse condizioni si trovano risultati diversi Esempi: Risultato del lancio di una moneta Traiettoria di 100 palline in un biliardo Vincita in una lotteria Numero di lanci di un dado per ottenere un 6 La probabilità si occupa di fenomeni non deterministici

Spazio campione: Evento: Insieme S di tutti i risultati dell’esperimento Esempio: Nel caso del lancio di una moneta S={Testa, Croce} Nel caso dei numeri di lanci di un dado necessari per avere 6 S=N (numeri naturali) Evento: Sottoinsieme E di S dato da un insieme di risultati caratterizzati dal godere di una stessa proprietà Esempio: E={Testa} nel lancio di una moneta

Esercizi Si estrae a caso una carta da un mazzo di 52 carte. Si descriva lo spazio dei campioni quando (a) i semi non sono presi in considerazione, (b) solo i semi sono presi in considerazione. Supponiamo di estrarre 2 carte da un mazzo di 52 e supponiamo di essere interessati a che vengano estratti 2 assi. Dire qual è lo spazio campione S e quale sottoinsieme E di S rappresenti l’evento cui siamo interessati. Essendo di corsa per prendere il treno, Genoveffa prende a caso 2 libri gialli tascabili da uno scaffale che ne contiene 15. Di questi libri 4 li ha già letti. Rappresentare l’evento: “Geneveffa prende 2 libri che non ha letto”.

Evento unione E U F F E E U F E U F è l’evento che si verifica quando almeno uno dei due eventi E e F si verificano

Evento intersezione E ' F E ' F è l’evento che si verifica quando entrambi i due eventi E e F si verificano Due eventi E e F si dicono incompatibili se E ' F=ø

Evento complementare Ec Ec è l’evento che si verifica quando E non si verifica

Definizioni di probabilità: Definizione classica Probabilità: regola che a ogni evento E associa un numero reale compreso tra 0 e 1 p: E p(E) Definizioni di probabilità: Classica (Pascal) Se un evento si può verificare in N modi mutuamente esclusivi ed ugualmente probabili, se m di questi possiede una caratteristica E, la probabilità di E è il rapporto tra il numero di casi favorevoli e il totale dei casi possibili (tutti equiprobabili)

Esempi Nel caso del lancio di una moneta S={Testa, Croce}. p(Testa)=1/2 (casi favorevoli 1, possibili 2) Lanciamo due dadi e calcoliamo la probabilità che la somma dei punti sia 4 Per semplicità scriviamo i numeri estratti come coppie: Le coppie di 6 numeri sono 6 * 6= 36 = numero di casi possibili; I casi favorevoli sono dati dalle coppie (1,3), (2,2) e (3,1) e sono quindi 3. Pertanto p(somma 4 in 2 lanci)=3/36=1/12

Problemi della definizione classica: Discussione Problemi della definizione classica: non sempre posso dire che eventi sono equiprobabili (asimmetrie - esempio: ho un dato truccato) il numero di casi deve essere finito Aspetti positivi: è una definizione operativa Determinazione della probabilità usando il calcolo combinatorio Definizione assiomatica

Definizione assiomatica p(Ac)=1- p(A) A,B in S p(AB)= p(A)+ p(B)- p(AB)

Esercizi Una pallina è estratta in modo casuale da un'urna che contiene 6 palline rosse, 4 bianche e 5 azzurre. Qual è la probabilità di estrarre una pallina rossa o bianca? Qual è la probabilità di non estrarre una pallina bianca? Estraggo a caso una carta da un mazzo di 52. Qual è la probabilità estrarre un dieci o una carta di picche?

Esercizi Qual è la probabilità di fare doppio 2 con una coppia di dadi non truccati? Qual è la probabilità di fare doppio 2 con una coppia di dadi truccati in modo che nel 50% dei casi esca 6 (e gli altri numeri siano ugualmente probabili)? Qual è la probabilità di totalizzare 4 con una coppia di dadi non truccati? Un impiegato pensa di avere 2 possibilità su 3 di non avere una promozione, 1 su 2 di avere un aumento e 1 su 4 di avere entrambi. Qual è la probabilità che l'impiegato abbia almeno una tra una promozione e un aumento?

Definizione frequentistica (o a posteriori) Richard von Mises Si ripete un esperimento N volte e se un evento con una certa caratteristica E si verifica m volte, la frequenza relativa di successo è f(E) dà una stima per la probabilità di E Problemi della definizione frequentistica: In sitazioni concrete il passaggio al limite su cui si basa la definizione non può essere effettuato È necessario ripetere l’esperimento un gran numero di volte

Definizione soggettiva (o bayesiana) Bernoulli, De Finetti Probabilità: grado di fiducia che una persona ha nel verificarsi dell’evento= Prezzo p che si è disposti a pagare per ricevere 1 se l’evento si verifica e 0 se non si verifica Esempio: se lancio un dado il prezzo equo per la scommessa “esce il 4” dipende dalle informazioni di cui si dispone; se il dado non è truccato si può assumere p=1/6 Problemi della definizione soggettiva: Non è operativa Una valutazione soggettiva non è necessariamente obiettiva

Problema: determinare il numero di elementi di un insieme finito Calcolo Combinatorio Problema: determinare il numero di elementi di un insieme finito elenco diretto (lungo!) Esempio:in un menù ho 3 antipasti, 2 primi, 4 secondi. Quanti sono i possibili pasti completi (includono tutte le 3 portate - scelte una sola volta)? Diagramma ad albero

Diagramma ad albero ………. ……….. 3 x 2 x 4 = 24 pasti completi A1 A2 A3

“Contare le scelte” Se gli insiemi A1, A2, …, Ak contengono n1, n2, …, nk elementi Ho N= n1 n2 … nk modi di scegliere prima un elemento di A1 , poi un elemento di A2 … ... infine un elemento di Ak In particolare: se n1 = n2 =…= nk =n allora N=nk = numero delle disposizioni con ripetizione di n oggetti a gruppi di k

Disposizioni = gruppi di oggetti che si possono formare scegliendo k oggetti tra n oggetti (I gruppi devono differire per qualche oggetto e per l’ordine) Disposizioni con ripetizione: si può ripetere lo stesso oggetto Esempio: Determinare e schedine del totocalcio si devono giocare per essere sicuri di fare 13 Le possibili schedine sono 313=1.594.323

Disposizioni semplici (senza ripetizione) di n oggetti tra k (≤n) D(n,k) Non si può ripetere lo stesso oggetto Esempio: Ad un gran premio di formula 1 partecipano 20 piloti. I primi tre classificati vanno sul podio.. Quante sono le possibili terne di piloti sul podio? Il primo classificato può essere un qualunque pilota tra 20, Il secondo uno qualunque tra i restanti 19, il terzo uno tra 18 Quindi: D(20,3)=20*19*18 In generale: D(n,k)=n*(n-1)*…*(n-k+1)

Permutazioni Esempio: P(n) = D(n,n)=n*(n-1)*… 2*1=n! = numero dei modi in cui si possono ordinare n oggetti P(n) = D(n,n)=n*(n-1)*… 2*1=n! Esempio: Quanti anagrammi (non necessariamente di senso compiuto) si possono formare della parola FOGLI Ho 5 possibili scelte per la prima lettera, 4 per la seconda, … 1 per la quinta, quindi gli anagrammi sono P(5)=5*4*3*2*1=5!=120

Combinazioni = disposizioni a meno dell’ordine= gruppi di oggetti che si possono formare scegliendo k oggetti tra n oggetti (I gruppi devono differire per qualche oggetto ma non per l’ordine)= Esempio Quante squadre di pallacanestro si possono formare con 8 giocatori Sono le combinazioni di 5 persone scelte tra 8 =

Esercizi In quanti modi 10 persone possono sedersi su una panchina che ha solo 4 posti? (Si risolva l'esercizio due volte, una volta considerando importante l'ordine in cui si siedono e una no). In quanti modi diversi si possono sedere 7 persone in un tavolo rotondo? Supponiamo di estrarre per 40 volte una pallina da un'urna contenente palline numerate da 1 a 365 ( dopo ciascuna estrazione la pallina estratta viene nuovamente messa nell'urna). Quanti sono i possibili risultati diversi? Quanti sono i possibili risultati in cui i 40 numeri estratti risultano tutti diversi tra loro? Si deve costituire un comitato di 3 membri, rappresentanti ciascuno gli studenti, i docenti e il personale amministrativo. Se ci sono 4 candidati per gli studenti, 3 per i docenti e 2 per il personale amministrativo, si determini quanti comitati differenti si possono formare.

Esercizi Dovete preparare un dolce, disponete di una cesta con 10 uova di cui ve ne serviranno solo 2 per l'impasto. Ma vi ricordate che il giorno prima avete posto in quel cesto 4 uova vecchie di due settimane. Qual è la probabilità di aver utilizzato almeno un uovo non fresco? Intorno ad un tavolo rotondo si dispongono a caso 5 uomini e 5 donne. Qual è la probabilità che ogni donna sia seduta tra due uomini? Qual è la probabilità di fare tre volte 6 lanciando tre volte un dado non truccato?