Sistemi di Telecomunicazioni CORSO DI SISTEMI DI TELECOMUNICAZIONE ANNO ACCADEMICO 2009-2010 COLLEGAMENTI IN FIBRA OTTICA Prof. Carlo Regazzoni D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni RIFERIMENTI BIBLIOGRAFICI [1] P. Mandarini, “Comunicazioni Elettriche”, Vol. I e II, Editrice Ingegneria 2000, Roma: 1989. [2] M. Luise, “Sistemi di Trasmissione su fibra ottica”, Edizioni ETS, Pisa: 1996. [3] G. Bonaventura, “Verso una rete tutta ottica”, Mondo Digitale, anno IV n.3, settembre 2005, pp. 32-43 D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni PARTE PRIMA: GENERALITA’ SULLA TRASMISSIONE A FIBRA OTTICA D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
FIBRE OTTICHE: GENERALITA’ Sistemi di Telecomunicazioni FIBRE OTTICHE: GENERALITA’ La trasmissione di segnali elettrici mediante fibre ottiche è realizzabile applicando ad un estremo della fibra una sorgente di luce (infrarosso: 0.52.0m di lunghezza d’onda) in grado di variare la potenza istantanea di emissione proporzionalmente al segnale da trasmettere, e collegando l’altro estremo della fibra ad un fotodiodo, in grado di generare una corrente proporzionale alla potenza luminosa (istantanea) ricevuta. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Note Storiche sulle Fibre Ottiche Sistemi di Telecomunicazioni Note Storiche sulle Fibre Ottiche 1500 : Murano(Venezia) utilizzo della propagazione guidata della luce nel vetro per fini artistici 1950 : Van Heel,Hopkins e Kanapy della Corning Glass (U.S.A) sviluppano il fiberscope per usi medicali; Kanapy introduce in letteratura il termine fibra ottica 1960 : sviluppo delle sorgenti ottiche LED e LASER 1970 : Corning Glass commercializza le prime fibre ottiche step-index multimodo , attenuazione 20dB/km 1980 : uso massivo delle comunicazioni ottiche D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Canale di comunicazione in Fibra Ottica Sistemi di Telecomunicazioni Canale di comunicazione in Fibra Ottica -Propagazione guidata ,segnale ottico, trasmissione digitale- Caratteristiche fondamentali di una linea di trasmissione in fibra ottica Mezzo di trasmissione: fibra in vetro-silice o fibra di plastica(tipo nylon) Diametro fibra 125 micron (standard) Attenuazione 0.2 -5 dB/km ( fibra in vetro-silice mono-multinodo) indipendente dalla frequenza di modulazione; elevata distanza fra amplificatori di linea per rigenerare il segnale (> 100km per fibre in vetro-silice monomodo). D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Vantaggi: Elevata capacità di trasmissione ( alcune decine di Gbit/s); Immunità da interferenze elettromagnetiche; Elevata sicurezza dei dati trasmessi (bassa probabilità di intercettazione). b) Svantaggi: Trasmissione di informazioni (segnali ottici), non di potenza. Gli amplificatori di linea dovrebbero essere alimentati tramite linea di alimentazione (ottica o elettrica) separata dalla fibra ottica di comunicazione, oppure tramite batteria. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Comunicazione in Fibra Ottica Sistemi di Telecomunicazioni Comunicazione in Fibra Ottica -Onde el.m. nelle T.L.C.- 103 108 10 11 1015 1020 f[Hz] VLF VHF EHF ottica raggi X Telefonia radio,tv radar arancio Rosso verde violetto giallo blu f[1015Hz] Segnale ottico Infrarosso (I.R.) visibile UltraVioletto(U.V.) c/f[10-6m=m] D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Efficienza di una linea in fibra ottica Un parametro di efficienza globale di una linea di trasmissione è dato dal prodotto tra la velocità massima di trasmissione ottenibile su un dato canale B, utilizzando una data tecnica di modulazione e la massima distanza L che è possibile coprire a tale velocità: Grafico di d al variare delle tecnologie D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Banda a disposizione in una linea a fibra ottica La banda a disposizione in una fibra ottica è dell’ordine di alcuni terahertz (ovvero 1012 Hz), circa dieci volte superiore a quella disponibile nelle comunicazioni radio. Questa grande disponibilità di banda consente di trasmettere ad altissima velocità e questo giustifica il grafico riportato nella slide precedente (in teoria è possibile arrivare a trasmettere ad un rate pari ad alcuni Tb/s). La trasmissione su collegamento hertziano subisce minori attenuazioni rispetto alla trasmissione su fibra ottica per lunghe distanze (e quindi si può trasmettere al rate atteso a maggiore distanza), ma la velocità consentita su fibra è così elevata da far sì che il prodotto d sia considerevolmente più elevato. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Schema generale di un sistema di trasmissione numerica su fibra La modulazione-dati è impressa con la tecnica On-Off-Keying (OOK), ovvero presenza/assenza di segnale in uscita dal modulatore, a seconda che venga trasmesso un bit a “1” o un bit a “0”. La sorgente luminosa è in questo caso un diodo LASER, che viene acceso alla massima potenza, oppure spento. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Schema generale di un sistema di trasmissione numerica su fibra (continuazione) Il segnale ottico prodotto dal LASER ad una certa lunghezza d’onda l0 viene quindi accoppiato alla fibra ottica. La fibra si comporta come una guida d’onda ottica. Il segnale trasmesso viene quindi raccolto dall’estremità terminale della fibra da un dispositivo detto fotorivelatore, che è un altro diodo a semiconduttore, il quale restituisce una corrente elettrica proporzionale all’intensità del segnale luminoso ricevuto. Il segnale viene poi amplificato, integrato (onde eliminare i disturbi indotti dal processo di fotorivelazione) ed infine rigenerato da un sogliatore (hard limiter), che restituisce il segnale trasmesso. Questo tipo di sistema è detto a rivelazione diretta e costituisce lo schema-base della quasi totalità dei sistemi di trasmissione in fibra attualmente in esercizio. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Generazione di sistemi ottici di trasmissione La prima generazione di sistemi ottici (fine anni ‘70) faceva uso di componenti optoelettronici in GaAs (Arseniuro di Gallio), che funzionavano alla lunghezza d’onda di 0.85mm (prima finestra) e di fibre ottiche di tipo multimodo, ossia in grado di far transitare il segnale secondo diverse modalità di propagazione. La seconda generazione di sistemi ottici (anni ‘80) è caratterizzata da una lunghezza d’onda di 1.3mm (II finestra) e da fibre il cui modo di propagazione è unico (fibre monomodo). La terza generazione di sistemi ottici (anni ‘90) utilizza la zona di funzionamento della fibra ottica a minima attenuazione (III finestra, l0 = 1.55mm per un’attenuazione di 0.25dB/Km). D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni La quarta generazione di sistemi ottici (attualmente in uso) mira ad incrementare la capacità aumentando la sensibilità dei ricevitori attraverso diverse tecniche di rivelazione del segnale (sistemi coerenti, o sistemi con amplificatore ottico). I sistemi futuri di quinta generazione (sistemi solitonici) si avvarranno delle proprietà di propagazione non lineare del segnale ottico per controbattere la distorsione cromatica ed aumentare la banda utile di trasmissione. Finestre di funzionamento dei sistemi di trasmissione su fibra D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni PARTE SECONDA: CARATTERISTICHE TRASMISSIVE DELLE FIBRE OTTICHE D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Segnale Ottico a) monocromatico distribuzione spettrale : () 0(0) =c/f potenza ottica : b)policromatico distribuzione spettrale () D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Riflessione e rifrazione in una fibra ottica Una fibra ottica è sostanzialmente una guida d’onda di materiale vetroso, il cui fenomeno di guida avviene sulla base di variazioni dell’indice di rifrazione all’interno del materiale. Queste variazioni provocano riflessioni e rifrazioni del segnale ottico trasmesso, che ne determinano la propagazione. I fenomeni di propagazione del segnale su fibra ottica possono essere studiati mediante due approcci differenti: Approccio basato sull’ottica geometrica (semplificato); Approccio basato sulle equazioni di Maxwell (formale). Vedremo, in seguito, sotto quali condizioni i due approcci sopra elencati possono efficacemente descrivere i fenomeni di propagazione del segnale ottico. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Parametri caratteristici dell’ottica geometrica Sistemi di Telecomunicazioni Parametri caratteristici dell’ottica geometrica c = velocità di propagazione del raggio luminoso nel vuoto u = velocità di propagazione del raggio luminoso nel mezzo Indice di rifrazione L’indice di rifrazione è un parametro caratteristico del mezzo di propagazione del segnale ottico. Esempi : aria n 1 acqua n 1.3 vetro-silice n 1 cristallo n 1 diamante n 1 D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Riflessione e rifrazione di un raggio luminoso Sistemi di Telecomunicazioni Riflessione e rifrazione di un raggio luminoso Nel caso in cui un raggio luminoso a si trova ad attraversare una supeficie di interfaccia tra due mezzi con una brusca variazione dell’indice di rifrazione (es vetro-aria), si ha la situazione schematizzata nella figura sottostante: a = raggio incidente a’ = raggio riflesso nel mezzo 1 b = raggio rifratto (trasmesso) nel mezzo 2 j1 = angolo di incidenza j2 angolo di rifrazione Legge di Snell D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Riflessione e rifrazione di un raggio luminoso Riferendosi all’esempio della slide precedente, dove n2<n1, si può osservare che il raggio rifratto tende ad allontanarsi dalla normale, poiché: e quindi: Aumentando l’angolo di incidenza, si dovrebbe arrivare ad una situazione in cui In questo caso, il raggio rifratto non si produce e si ha il fenomeno della riflessione totale; L’angolo di incidenza (detto angolo critico) oltre il quale si ha il fenomeno della riflessione totale è quello per cui: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Applicazione dei concetti teorici su riflessione e rifrazione del raggio luminoso alla trasmissione ottica Dai concetti teorici precedentemente espressi, si può intuire grossolanamente il principio di funzionamento della guida d’onda in fibra ottica. I raggi in fibra che incidono sull’interfaccia vetro-aria (mezzo 1: vetro, mezzo 2: aria) con un angolo maggiore di jc sono riflessi totalmente e restano confinati indefinitamente all’interno della fibra stessa, così come schematizzato nella figura sottostante: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Fibre Ottiche a riflessione totale Molti tipi di fibra ottica di utilizzo commerciale non si discostano di molto dal principio di funzionamento ideale precedentemente menzionato. La realizzazione pratica di tali fibre prevede il controllo degli indici di rifrazione di entrambi i mezzi coinvolti nel fenomeno della riflessione totale, quindi uno dei due mezzi non può essere l’aria (come ipotizzato in precedenza per il mezzo 2). Nella realtà le fibre a riflessione totale sono costituite da un cilindro interno, detto nucleo (core), che corrisponde al materiale 1 dell’esempio precedente ed un guscio cilindrico esterno di materiale vetroso, detto mantello (cladding), che corrisponde al materiale 2. In generale sia il mantello che il nucleo sono costituiti da materiali vetrosi a diverso indice di rifrazione, ma non mancano fibre in materiale plastico, dai costi ridotti, ma con caratteristiche di propagazione peggiori rispetto alle fibre in vetro. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Fibra Ottica a riflessione totale -Struttura- Sistemi di Telecomunicazioni Fibra Ottica a riflessione totale -Struttura- a)sezione trasversale b)sezione longitudinale Cladding (mantello) n2 Core (nucleo) n1>n2 Diametro nucleo 50mm Diametro mantello 125mm D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Fibre Step-Index Le fibre step-index sono caratterizzate da una discontinuità a gradino dell’indice di rifrazione tra nucleo e mantello. E’ possibile studiare le proprietà di propagazione del segnale mediante le regole dell’ottica geometrica, solo per le fibre step-index a nucleo largo, ovvero caratterizzate da un raggio del nucleo molto maggiore della lunghezza d’onda del segnale luminoso (cioè l<<50mm). La fibra step-index a nucleo largo è il tipo di fibra più semplice da realizzare, ma presenta, come vedremo, alcuni inconvenienti che la rendono poco adatta alle applicazioni pratiche. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Fibre Step-Index: analisi della propagazione secondo i principi dell’ottica geometrica Consideriamo una fibra step-index a nucleo largo ed esaminiamo, secondo i principi dell’ottica geometrica, la propagazione di un raggio meridionale (ovvero giacente su di un piano passante per l’asse della fibra stessa). Consideriamo un raggio proveniente da una sorgente di segnale, che incide l’interfaccia nucleo-mantello con un angolo inferiore a jc. Tale raggio sarà parzialmente rifratto nel mantello e la porzione riflessa, a sua volta rifratta, fino a che il raggio non si esaurisce dopo poche riflessioni interne successive In questo caso si dice che il raggio non viene accettato dalla fibra. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Fibre Step-Index: analisi della propagazione secondo i principi dell’ottica geometrica Angolo di accettazione della fibra ottica Si definisce pertanto un cono di accettazione della fibra, che contiene tutti i raggi che riescono a propagarsi per riflessione totale del nucleo. Il vertice del cono di accettazione giace su un diametro della sezione del nucleo (vedi figura sottostante) e l’angolo al vertice qa è detto angolo di accettazione della fibra ottica. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Fibre Step-Index: analisi della propagazione secondo i principi dell’ottica geometrica Relazione tra angolo di accettazione ed indici di rifrazione (1) Consideriamo un raggio che subisce una riflessione interna totale (ovvero j1 > jc). Riferendosi alla figura della slide precedente, l’angolo q1 (complementare di j1) è l’angolo sotto cui viene rifratto un raggio meridionale entrato in fibra, e che forma con la medesima un angolo q tale che: n0 è l’indice di rifrazione del mezzo esterno alla fibra (aria), che è circa uguale ad 1. Poichè q1 è complementare di j1 si avrà che: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Fibre Step-Index: analisi della propagazione secondo i principi dell’ottica geometrica Relazione tra angolo di accettazione ed indici di rifrazione (2) Poiché deve essere j1 > jc (condizione di riflessione totale), si ha che: da questo consegue che: da cui: Quindi i raggi che si presentano alla bocca della fibra con un angolo q minore di qa, definito sopra, subiranno una riflessione totale da parte della fibra e si propagheranno attraverso la fibra stessa. Altrimenti non saranno accettati dalla fibra e verranno “dispersi” nel mantello. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Fibre Step-Index: analisi della propagazione secondo i principi dell’ottica geometrica Apertura numerica di una fibra ottica Sovente, invece di qa viene fornito il valore del suo seno, valore che è chiamato apertura numerica NA (o semplicemente apertura) ovvero: Tanto maggiore è l’apertura numerica della fibra, tanto più ampio è il cono di accettazione dei raggi. Con i valori tipici delle fibre per telecomunicazioni, ovvero n1 = 1.50 ed n2 = 1.47 si ottiene: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Esempio di core e cladding in vetro : n0 = n2 1.50; n1 1.48 Cladding n1 qm c 90°-c Asse ottico Core n2 Angolo di accettazione : qm = Mezzo n0< n2 Apertura numerica : N.A. = n0sin qa = Esempio aria/core e cladding in vetro : n0 1 ; n2 1.50 ; n1 1.48 . N.A. = = 0.24 qa = arcsin 0.24 14° m D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Esercizio 1 Progettare una fibra ottica con core in vetro (n2 = 1.48) ed angolo di accettazione qm= 20 ° rispetto ad una sorgente ottica operante in aria (n01) Cladding n1 = ? aria qm c Asse ottico Core n2 = 0.48 Mezzo n0 1 Soluzione : occore utilizzare un cladding con indice di rifrazione n21.44 D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni La Dispersione Intermodale nelle fibre Step-Index a nucleo largo La dispersione intermodale è l’inconveniente delle fibre step-index a nucleo largo. Supponiamo di avere due raggi meridionali incidenti sulla bocca della fibra, uno con l’angolo di incidenza minimo (q = 0) e l’altro massimo (q = qa), come indicato nella figura sottostante. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni La Dispersione Intermodale nelle fibre Step-Index a nucleo largo I due raggi viaggiano all’interno del nucleo alla stessa velocità di propagazione v = c/n1, ma coprono una stessa distanza L, misurata lungo l’asse della fibra, attraverso due percorsi diversi, che hanno lunghezza totale diversa. In particolare, il raggio 1 percorre una traiettoria di lunghezza d1 = L, mentre la traiettoria del raggio 2 è lunga d2 = (L / sin jc). Se i due raggi sono entrati in fibra allo stesso istante, giungono al punto a distanza L sulla fibra negli istanti: L’intervallo di tempo che intercorre tra i due istanti è pari a: Variazione relativa dell’indice di rifrazione D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni La Dispersione Intermodale nelle fibre Step-Index a nucleo largo Questo fenomeno di ritardo temporale tra i diversi raggi prende il nome di dispersione intermodale. Infatti i vari cammini percorsi dai raggi possono essere considerati come modi di propagazione dell’onda luminosa all’interno della fibra. Ad ognuno di questi modi può essere associata una velocità di propagazione lungo l’asse della fibra pari a: che dipende dall’angolo di incidenza j del raggio sull’interfaccia nucleo-mantello e quindi dalla natura del modo. Per questo motivo le fibre step-index a nucleo largo sono anche fibre multimodo e sono caratterizzate dalla dispersione intermodale. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Effetti della Dispersione Intermodale nelle fibre Step-Index Multimodo sulle trasmissioni numeriche La dispersione intermodale si rivela dannosa quando il ritardo relativo massimo Dt nella propagazione dei modi diviene confrontabile con le costanti di tempo del segnale trasmesso in fibra. Se viene lanciato in fibra un impulso di durata T mediante uno dei raggi più lenti (ovvero con angolo di incidenza esterno q = qa), la durata di tale impulso, osservato alla distanza L sulla fibra sarà pari a T+Dt. Quando Dt diviene confrontabile con T, l’impulso trasmesso si “allarga” e tende ad “invadere “gli intervalli di segnalazione adiacenti (vedi figura sotto). Si determina quindi interferenza inter-simbolica (ISI) D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Effetti della Dispersione Intermodale nelle fibre Step-Index Multimodo sulle trasmissioni numeriche La dispersione intermodale impone quindi un limite superiore alla velocità di trasmissione, che deve essere scelta in modo tale da non avere ISI. In pratica: Considerando la banda di trasmissione B circa uguale al bit-rate Rb, si ottiene inoltre che: Introducendo il parametro di capacità d=BL, si ottiene infine: Con i valori di n1 ed n2 usuali (1.50 ed 1.47 rispettivamente) si ottiene un valore della capacità di 10Mb/s*Km, che è un valore alquanto modesto. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Fibre ad indice graduato (Graded-Index) Per ovviare ai problemi di dispersione intermodale tipici delle fibre step-index multimodali, si possono fabbricare fibre di differente tipo. Restando nell’ambito delle fibre a nucleo largo, si sono realizzate fibre il cui indice di rifrazione del nucleo varia gradatamente tra un valore massimo n1 ed il valore del mantello n2, man mano che ci si sposta dal centro della fibra verso il mantello. Questo tipo di fibra è detto ad indice graduato (graded index). D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Fibre Graded-Index: caratteristiche della propagazione Nelle fibre graded-index i raggi non subiscono una riflessione brusca all’interfaccia nucleo-mantello, ma vengono “incurvati” dalla variazione graduale dell’indice di rifrazione del nucleo. La principale legge di variazione di n con la distanza radiale r è il cosiddetto profilo a: n n2 n1 r a è il raggio del nucleo e a è un parametro definito in sede di lavorazione. Le traiettorie di propagazione possono essere ricavate mediante il principio di Fermat, secondo il quale il percorso scelto da un raggio per propagarsi tra un punto P1 di partenza ed un punto P1 di arrivo è quello che minimizza il tempo totale di percorrenza. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Fibre Graded-Index: caratteristiche della propagazione Il tempo dt necessario a percorrere un tratto di lunghezza elementare ds, relativo al generico punto r, caratterizzato da indice di rifrazione n(r) è pari a: Considerando il principio di Fermat, la traiettoria seguita dal raggio è tale da minimizzare l’integrale curvilineo: che è proporzionale al tempo di propagazione totale. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Fibre Graded-Index: caratteristiche della propagazione Il principio di Fermat può essere riformulato in maniera differenziale (equazione di Eulero-Lagrange), ovvero: Adottando un sistema di riferimento come quello della figura sottostante, tale equazione può essere semplificata nella seguente maniera, per ottenere l’equazione cartesiana y(z) del raggio luminoso: (distanza radiale) Ove n è funzione di r, secondo il profilo a D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Fibre Graded-Index: caratteristiche della propagazione Sostituendo n(r) precedentemente indicata, con a = 2 (profilo parabolico) e considerando D<<1 (condizione verificata nella pratica), si trova l’equazione di un oscillatore armonico, la cui soluzione è la seguente: Ove y0 e y’0 sono la posizione e la direzione iniziale del raggio. Due raggi che partono dalla stessa posizione, ma con direzioni iniziali differenti si propagano seguendo traiettorie diverse, che seguono un andamento sinusoidale con diverse ampiezze (vedi figura slide precedente). In questo modo la dispersione intermodale viene attenuata, in quanto, per effetto della graduazione dell’indice di rifrazione, i raggi che si allontanano maggiormente dall’asse seguendo traiettorie più lunghe, si trovano a transitare in zone della fibra caratterizzate da un indice di rifrazione più piccolo, rispetto a quello che si ha in vicinanza dell’asse. L’allungamento della traiettoria è quindi compensato da una maggiore velocità di propagazione. In pratica la risposta della fibra viene “equalizzata”. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Fibre Graded-Index: incremento delle prestazioni rispetto alle fibre step-index Sfortunatamente, i risultati dell’analisi mostrata in precedenza, valgono solo per i raggi meridionali, cosicché un certo grado di dispersione è presente anche nelle fibre graded-index. Si può dimostrare che le fibre a profilo a presentano presentano un ritardo differenziale minimo pari a: quando si sceglie: Questo è il motivo per cui si sceglie a=2, come già accennato. La dispersione minima conduce ad un valore massimo della capacità per fibra multimodo graduata pari a: Valori tipici: 4Gbit/s*Km D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Fibre monomodali a nucleo stretto Il rimedio più efficace per risolvere il problema della dispersione intermodale sarebbe, teoricamente, quello di inibire la propagazione dei modi multipli in fibra, lasciando un solo modo fondamentale. Sfortunatamente questa condizione, detta di monomodalità, non può essere ricavata mediante l’approccio semplificato dato dall’ottica geometrica, usato per la fibra multimodo. La monomodalità richiede una configurazione della fibra a “nucleo stretto” (<<50mm), in modo tale che le dimensioni caratteristiche della fibra risultino confrontabili con la lunghezza d’onda del segnale (0.8 -1.6mm). In queste condizioni si deve ricorrere ad un approccio più formale per studiare le caratteristiche di propagazione del segnale attraverso la fibra ottica: ovvero l’approccio basato sulle equazioni di Maxwell. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Propagazione di un’onda elettromagnetica in una Fibra Step-Index (approccio formale con equazioni di Maxwell) Precisiamo innanzitutto la notazione adottata. Adottando il formalismo degli equivalenti in banda-base di segnali passabanda (o inviluppi complessi), un campo elettrico generico può essere espresso come: Vettore posizione Equivalente in banda-base rispetto alla frequenza f0 del campo elettrico. Nel caso di campo monocromatico si ha che: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Propagazione di un’onda elettromagnetica in una Fibra Step-Index (approccio formale con equazioni di Maxwell) L’analisi della propagazione del segnale ottico in una fibra di tipo step-index parte dalle equazioni di D’Alembert delle onde: Riscrivendo tali equazioni attraverso l’inviluppo complesso di un campo monocromatico (altrimenti detto fasore) in un materiale dielettrico omogeneo, isotropo e senza perdite, otteniamo la cosiddetta equazione di Helmoltz: è una qualsiasi tra le sei componenti dei vettori complessi è il numero d’onda nel vuoto dell’oscillazione accoppiata alla fibra. n è l’indice di rifrazione nel mezzo. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Propagazione di un’onda elettromagnetica in una Fibra Step-Index (approccio formale con equazioni di Maxwell) In un sistema di riferimento a coordinate cilindriche (r,f,z), avente asse z coincidente con l’asse longitudinale della fibra nella direzione di propagazione dell’onda, l’equazione di Helmoltz diventa: z (i) con n=n1 se (nucleo) e n=n2 se (mantello) A questo punto si richiede che la soluzione dell’equazione (i) abbia la seguente forma: (ii) che, in ogni punto della fibra, fissati r e f, rappresenta un’onda progressiva lungo l’asse z, con coefficiente di propagazione b da determinarsi. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Propagazione di un’onda elettromagnetica in una Fibra Step-Index (approccio formale con equazioni di Maxwell) Sostituendo (ii) in (i) si ottiene: (iii) Il termine che moltiplica la funzione F è una costante rispetto alla coordinata f. Per cui la (iii) può essere spezzata in due equazioni differenziali ordinarie per le funzioni F(f) e F(r). Poiché la funzione F deve risultare periodica di periodo 2p nella variabile f, l’equazione relativa deve essere scritta nella seguente maniera: (iv) ove m è una costante intera arbitraria per rispettare la condizione di periodicità. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Propagazione di un’onda elettromagnetica in una Fibra Step-Index (approccio formale con equazioni di Maxwell) L’equazione per F(r) è allora un’equazione del secondo ordine di Bessel: (v) Affinché l’onda sia confinata all’interno del nucleo (ossia venga guidata), la costante di propagazione b deve soddisfare le seguenti due condizioni: (costante di propagazione minore del numero d’onda del nucleo) (costante di propagazione maggiore del numero d’onda del mantello) (Verificheremo dopo perché) E’ quindi conveniente definire due nuove costanti: (nel nucleo) (nel mantello) D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Propagazione di un’onda elettromagnetica in una Fibra Step-Index (approccio formale con equazioni di Maxwell) L’equazione (v) assumerà quindi due forme diverse, una relativa al nucleo della fibra ottica ed una relativa al mantello, ovvero: (v.i) (v.ii) Le equazioni (v.i) e (v.ii) ammettono diversi tipi di soluzioni generali, dette funzioni di Bessel, che sono definite in forma numerica. Si devono scartare le funzioni di Bessel che non sono limitate in r=0 (poiché il campo elettrico assume valori finiti in tale punto). Così come si devono scartare le funzioni di Bessel che non sono limitate per r tendente all’infinito, poiché si richiede che il campo si esaurisca interamente nel mantello (supposto di spessore infinito). D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Propagazione di un’onda elettromagnetica in una Fibra Step-Index (approccio formale con equazioni di Maxwell) Funzioni di Bessel di prima specie D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Propagazione di un’onda elettromagnetica in una Fibra Step-Index (approccio formale con equazioni di Maxwell) Funzioni di Bessel di seconda specie (Per x->0, tendono a - ) D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Propagazione di un’onda elettromagnetica in una Fibra Step-Index (approccio formale con equazioni di Maxwell) Funzioni di Bessel modificate di prima specie (Per x->+ , tendono a + ) D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Propagazione di un’onda elettromagnetica in una Fibra Step-Index (approccio formale con equazioni di Maxwell) Funzioni di Bessel modificate di seconda specie D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Propagazione di un’onda elettromagnetica in una Fibra Step-Index (approccio formale con equazioni di Maxwell) Da quanto visto nei grafici riportati precedentemente sulle funzioni di Bessel, le uniche funzioni ammissibili come soluzioni dell’equazione di Helmoltz sono quelle di prima specie (Jm) e quelle modificate di seconda specie (Km). La soluzione di (v.i) e (v.ii) viene quindi esplicitata nella seguente maniera. (vi) Le costanti Ay e By sono determinate sulla base delle condizioni al contorno. Esempi di andamenti delle soluzioni dell’equazione di Helmoltz sono mostrati sotto: è una qualsiasi tra le 6 componenti dei vettori degli equivalenti in banda-base di E e di H. Quindi vi sono da determinare 12 costanti. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Propagazione di un’onda elettromagnetica in una Fibra Step-Index (approccio formale con equazioni di Maxwell) Il numero di costanti da determinare può essere, tuttavia, ridotto. Attraverso le equazioni di Maxwell è possibile infatti esprimere le componenti radiali e le componenti tangenziali del campo magnetico e del campo elettrico in funzione delle sole componenti assiali, ovvero: Le costanti da determinare rimangono in questo modo solamente quattro (due relative alle componenti assiali del campo elettrico e due relative alle componenti assiali del campo magnetico). Queste costanti possono essere, infine, determinate imponendo le condizioni di continuità delle componenti tangenziali ed assiali all’interfaccia in r=a (interfaccia nucleo-mantello). Si ricava in tal modo un sistema a 4 equazioni e 4 incognite, che ammette soluzione non banale solo se il determinante della matrice dei coefficienti è non nullo. Questa condizione è detta equazione caratteristica. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Propagazione di un’onda elettromagnetica in una Fibra Step-Index (approccio formale con equazioni di Maxwell) Omettendo i calcoli, l’equazione caratteristica ha la seguente formulazione (l’apice indica l’operazione di derivazione): (vii) L’andamento oscillatorio delle funzioni di Bessel Jm suggerisce che fissato l’ordine m di armonica della soluzione elementare dell’equazione di Helmoltz secondo la (vi.i) e (vi.ii), si hanno in generale soluzioni multiple dell’equazione caratteristica, ognuna di esse contraddistinta da un diverso valore della costante di propagazione b. Tali valori sono indicati con bmi, ove m è l’ordine di armonica (ovvero l’ordine della funzione di Bessel) ed i è l’ordine della soluzione. Ognuno dei valori sopracitati corrisponde ad un modo distinto di propagazione dell’onda in fibra, caratterizzato da una specifica costante di propagazione e da una particolare distribuzione radiale del campo. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Propagazione di un’onda elettromagnetica in una Fibra Step-Index (approccio formale con equazioni di Maxwell) A questo punto possiamo capire perché devono verificarsi le due condizioni relative alla costante di propagazione precedentemente indicate in modo tale da garantire il confinamento dell’onda all’interno del nucleo, ovvero: Introduciamo la seguente quantità che chiameremo indice di modo, ovvero: In effetti, ogni modo all’interno della fibra si propaga con un indice di rifrazione n, che deve rispettare le due condizioni: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Propagazione di un’onda elettromagnetica in una Fibra Step-Index (approccio formale con equazioni di Maxwell) Infatti, un modo cessa di essere guidato, quando: (*) Questo può essere visto considerando l’andamento della funzione di Bessel soluzione dell’equazione di Helmoltz nel mantello. Per valori molto elevati dell’argomento essa può essere approssimata come: Quando è verificata la condizione (*), si ha che: E quindi g2<=0. Ciò significa che non si ha più il decadimento esponenziale del campo all’interno del mantello (avremmo una funzione di Bessel che diviene un’esponenziale complessa). Il campo si propaga anche nel mantello. Se g=0 (ovvero se n = n2) si dice che il modo raggiunge la condizione di cutoff. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Determinazione del numero dei modi di propagazione in una fibra step-index a nucleo stretto Ricavare il numero dei modi di propagazione supportati da una fibra step-index a nucleo stretto non è un’operazione immediata. Occorre inanzitutto definire un nuovo parametro, detto parametro V della fibra o anche frequenza normalizzata: Il parametro V è facilmente determinabile in funzione delle specifiche standard della fibra (apertura numerica, raggio del nucleo). Tuttavia esso è fondamentale nella determinazione del numero dei modi di propagazione della fibra step-index. Dato che: Si ottiene infine che: (costante di propagazione) (viii) D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Determinazione del numero dei modi di propagazione in una fibra step-index a nucleo stretto Sostituendo la (viii) in (vii), si ottiene un’equazione in due incognite: ka e ga, che possiamo interpretare in maniera grafica come l’equazione implicita di una famiglia di curve sul piano (ka, ga), ciascuna individuata da un’armonica di ordine m. Fissato m, ogni punto della relativa curva rappresenta una possibile coppia di valori (ka, ga), relativi ad un modo della fibra. Nella figura della slide precedente sono rappresentate le famiglie di curve per m=0 (tratto nero spesso) e m=1 (tratto grigio). Tuttavia tali curve non ci dicono quanti e quali modi sono effettivamente supportati dalla fibra ottica alla lunghezza assegnale l0. Questa informazione si ricava tenendo conto che: Equazione di una circonferenza di raggio V D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Determinazione del numero dei modi di propagazione in una fibra step-index a nucleo stretto Le intersezioni tra le famiglie di curve e la circonferenza di raggio V rappresentano le coppie di valori (ka, ga), relative ai modi di propagazione effettivamente supportati dalla fibra ottica. Da queste coppie di valori, si può risalire al coefficiente di propagazione b di ogni modo supportato. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Determinazione del numero dei modi di propagazione in una fibra step-index a nucleo stretto Il parametro V è direttamente proporzionale all’apertura numerica della fibra. Questo incontra quanto osservato in precedenza dall’analisi condotta con l’ottica geometrica per le fibre a nucleo largo, laddove più ampia è l’apertura numerica e più largo è il cono di accettazione dei raggi ed, in definitiva, maggiore il numero dei modi di propagazione supportati. Dalla figura riportata nella slide precedente, si osserva come, per quanto piccolo sia il valore di V, almeno una intersezione tra una circonferenza ed una delle curve della famiglia m = 1 esisterà sempre. Si può dimostrare (qui viene omesso) che se V<2.405, tale intersezione è unica, anche in presenza delle altre famiglie di curve con m>1, che nel grafico non sono rappresentate. Infatti si può verificare che V=2.405 è il valore per il quale tutti gli altri modi della fibra, eccetto quello fondamentale, sono nella condizione di cutoff (ovvero non possono propagarsi in maniera guidata). La condizione di monomodalità della fibra ottica è quindi: Condizione di monomodalità D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Determinazione del numero dei modi di propagazione in una fibra step-index a nucleo stretto La curva sperimentale che riporta il numero di modi supportati M da una fibra step-index in funzione del parametro V è mostrata nella figura sottostante. Sono anche indicate le due curve di upper e lower bound che “racchiudono” la curva sperimentale. Ciascun modo può essere caratterizzato da diverse polarizzazioni. Valori medio-piccoli di V Valori grandi di V (viii) D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Realizzazione pratica di una fibra step-index monomodale Per concludere questa parte, si può dire che una fibra monomodale può essere realizzata, in pratica, rispettando in sede di fabbricazione la seguente condizione: I due parametri costruttivi su cui si può agire sono il raggio del nucleo a e la variazione relativa dell’indice di rifrazione D. Occorre pertanto ridurre o uno o l’altro o entrambi. La riduzione eccessiva del raggio del nucleo crea difficoltà di accoppiamento della fibra alle sorgenti ed ai fotorivelatori e rende problematiche le giunzioni durante la posa. Per questo si cerca di ridurre anche D, in modo da non dover realizzare fibre a nucleo troppo stretto. Tuttavia un valore troppo basso di D (nucleo e mantello con indici di rifrazione quasi uguali) e quindi di NA, rende difficile fare entrare e propagare un raggio all’interno della fibra (infatti l’angolo di accettazione qa diviene molto piccolo). D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Realizzazione pratica di una fibra step-index monomodale Per ovviare a questi inconvenienti, talora si utilizzano le cosiddette fibre W, dette anche a mantello depresso. Queste fibre sono caratterizzate da un nucleo non troppo stretto e da un doppio mantello. Il primo mantello ha un indice di rifrazione molto inferiore rispetto a quello del nucleo (vedi figura sottostante) ed è molto sottile, mentre il secondo mantello, di spessore maggiore del primo, ha un indice di rifrazione comparabile con quello del nucleo. Il modo fondamentale residuo è tale da verificare la condizione: Eventuali altri modi di ordine superiore con: Non sono possibili in quanto il primo mantello funge da barriera (per tali modi l’onda tende a propagarsi nel primo mantello ed a disperdersi successivamente nel secondo). D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Dispersione intramodale in una fibra step-index monomodale Fino ad ora abbiamo visto quali accorgimenti possono essere adottati per limitare il fenomeno della dispersione intermodale, che è oggettivamente il massimo fattore di limitazione della capacità di un collegamento in fibra. Le soluzioni adottate vanno dall’uso di fibre a nucleo largo, ma ad indice graduato, all’impiego di fibre step-index monomodali (a nucleo stretto o a mantello depresso). La soluzione più efficiente appare quella che utilizza fibre step-index monomodali (altre soluzioni, come quella di utilizzare fibre ad indice graduato ed a nucleo stretto non sono utili a migliorare le prestazioni e quindi non vengono realizzate). Tuttavia anche le fibre monomodali soffrono di un fattore che limita la capacità del collegamento. Questo fattore è la dispersione intramodale. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Dispersione intramodale in una fibra step-index monomodale La dispersione intramodale è dovuta al fatto che il vetro è un materiale lineare, ma dispersivo, ovvero il suo indice di rifrazione dipende dalla lunghezza d’onda dell’oscillazione luminosa a cui è sottoposto, ovvero: Quindi segnali a lunghezza d’onda differenti si propagano nel mezzo a velocità differenti. Questo fatto è assai rilevante nei sistemi di trasmissione in fibra, poiché il segnale trasmesso è un segnale modulato, che è scomponibile in una sovrapposizione di più oscillazioni monocromatiche a diverse lunghezze d’onda (frequenze), centrata intorno alla frequenza della portante f0 (ovvero alla lunghezza d’onda fondamentale l0). Questo tipo di segnale è detto pacchetto d’onda e la generica componente a frequenza f del pacchetto d’onda si propaga con velocità di gruppo definita da: (Ottica geometrica) D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Dispersione intramodale in una fibra step-index monomodale Se n non è costante rispetto alla frequenza, tali componenti si propagano con velocità diverse ed, una volta raccolte all’estremità del mezzo, si ricombinano con ritardi diversi, dando luogo ad una distorsione lineare analoga alla dispersione temporale per cammini multipli. La distorsione cromatica può essere analizzata quantitativamente considerando un pacchetto d’onda che si propaga lungo l’asse z in un mezzo omogeneo, isotropo, lineare e semi-infinito. L’espressione del pacchetto d’onda è la seguente: Costante di propagazione alla lunghezza d’onda l0 Una qualunque delle sei componenti del campo elettromagnetico associato all’onda luminosa Inviluppo complesso del pacchetto d’onda D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Dispersione intramodale in una fibra step-index monomodale A noi interessa calcolare una relazione che leghi la forma d’onda dell’inviluppo complesso dell’onda inviata, con quella osservabile ad una distanza z dall’imboccatura della fibra, ovvero: Poiché la distorsione è lineare, possiamo attribuire alla relazione che lega i due inviluppi complessi il significato di una relazione ingresso-uscita di un sistema lineare, che può essere completamente caratterizzato dalla propria risposta in frequenza. Per calcolare tale risposta in frequenza, supponiamo che: Oscillazione sinusoidale a frequenza n D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Dispersione intramodale in una fibra step-index monomodale Per cui, nelle ipotesi fatte in precedenza, avremo che: Risposta in frequenza della distorsione intramodale Per cui, il pacchetto d’onda è esprimibile come: (i) Ritornando, tuttavia, alla definizione letterale di pacchetto d’onda, si può scrivere un’altra eguaglianza: (ii) D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Dispersione intramodale in una fibra step-index monomodale Eguagliando (i) con (ii) otterremo la risposta in frequenza del mezzo dispersivo: Se l’indice di rifrazione non dipendesse dalla frequenza (mezzo non dispersivo), si otterrebbe: E quindi non si avrebbe alcuna distorsione durante la propagazione, ma solamente un ritardo proporzionale alla lunghezza del tragitto percorso, ovvero: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Dispersione intramodale in una fibra step-index monomodale Se invece si considera la fibra un mezzo debolmente dispersivo (qual è), ovvero si considerano variazioni modeste dell’indice di rifrazione in funzione della frequenza, è lecito approssimare l’andamento di b(f) con un polinomio di Taylor attorno ad f0 ed arrestato al II° ordine. In tal caso si ottiene: La relazione scritta sopra può essere espressa in funzione della velocità di gruppo, precedentemente definita e del coefficiente di dispersione cromatica, definito come: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Dispersione intramodale in una fibra step-index monomodale In tal modo si ottiene la seguente espressione della distorsione cromatica: Termine di distorsione di fase (nullo se il mezzo non è dispersivo, mentre dipende da D se lo è) Termine che introduce un ritardo di propagazione (ritardo di gruppo) A questo punto, possiamo abbandonare l’ipotesi di materiale semi-infinito e ritornare al caso della fibra ottica step-index monomodale, usando l’indice di modo, che è espresso come rapporto tra la costante di propagazione ed il numero d’onda, ovvero: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Dispersione intramodale in una fibra step-index monomodale L’indice di modo risulta variabile con f poiché il materiale è dispersivo (in quanto b dipende da n). Ricordando quindi la definizione di velocità di gruppo, avremo che: Ove: Indice di gruppo, che lega la velocità di gruppo della componente del pacchetto d’onda a frequenza f con la corrispondente velocità nel vuoto. Le diverse componenti spettrali del segnale in fibra aventi differenti lunghezze d’onda si propagheranno quindi con velocità di gruppo in generale diverse. L’impulso sarà tanto più distorto quanto più forte è la dipendenza di N da f. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Dispersione intramodale in una fibra step-index monomodale Supponiamo che lo spettro del segnale trasmesso si estenda su una banda B centrata attorno alla frequenza di portante f0, che corrisponde ad una larghezza spettrale Dl centrata su l0. Il ritardo differenziale massimo relativo alle componenti in tale banda, associate ad un impulso di durata T, propagatosi in fibra per una lunghezza L sarà esprimibile come: Introducendo il coefficiente di dispersione cromatica D si ottiene, infine: Il coefficiente di dispersione cromatica D, misurato in psec/nm*Km, indica l’aumento di durata di un impulso (in psec) caratterizzato da una certa larghezza spettrale Dl (misurata in nm), che ha viaggiato in fibra per 1 Km. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Dispersione intramodale in una fibra step-index monomodale L’andamento tipico di D in funzione della lunghezza d’onda è mostrato nella Figura sottostante, dalla quale si può desumere che D è nullo per valori di l pari a circa 1.3mm (seconda finestra). Il valore di D per quel che riguarda la terza finestra (l=1.55mm) è invece pari a 17 psec/km*nm. In realtà la completa nullità delle dispersioni cromatiche non è praticamente raggiungibile e, lavorando in seconda finestra, si può arrivare a valori realistici di D pari a 1 psec/km*nm. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Dispersione intramodale in una fibra step-index monomodale (limitazione alla capacità della fibra) Supponendo che l’estensione spettrale del segnale Dl sia circa uguale a 1nm (possibile da ottenere con una sorgente LASER a basso costo) e di lavorare in seconda finestra con D = 1 psec/nm*Km, si ottiene che: pari a 1Tbit/sec*Km condizione per non avere ISI Da questi numeri si capisce come la condizione di monomodalità in una fibra ottica consenta di raggiungere elevati valori di capacità, di svariati ordini di grandezza superiori a quelli ottenuti con fibre multimodali, sia di tipo step-index, che ad indice graduato. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Banda passante di un canale in fibra ottica Da quanto visto finora, si può affermare che il coefficiente di distorsione cromatica può essere espresso come la somma di due coefficienti: DM, che è il coefficiente di sola dispersione cromatica relativo al materiale (unica fonte di dispersione nelle fibre monomodali); DW, che è la dispersione di guida d’onda, dipendente dalla geometria della fibra (termine legato alla dispersione intermodale delle fibre a nucleo largo). La caratteristica dispersiva del materiale si traduce in un comportamento passabasso della risposta in frequenza del canale in fibra ottica. Vedremo questo tipo di comportamento prima per le fibre ottiche monomodali, dove la frequenza di taglio della risposta del canale sarà legata alla dispersione intramodale e poi per le fibre ottiche multimodali, ove occorrerà tenere conto anche dell’influenza della dispersione intermodale. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Banda passante di una fibra ottica monomodale Da quanto abbiamo visto, l’effetto distorcente sul segnale trasmesso esercitato da una fibra ottica monomodale è essenzialmente un suo allargamento temporale. Se, pertanto, l’eccitazione in ingresso s(t) alla fibra è un impulso matematico, l’uscita h(t) tenderà a divenire un impulso ad andamento Gaussiano, come mostrato nella Figura sottostante: s(t) t D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Banda passante di una fibra ottica monomodale Poiché l’allargamento temporale dell’impulso tl è limitato da una quantità proporzionale alla lunghezza della tratta della fibra ottica, è ragionevole supporre che anch’esso sarà proporzionale a tale lunghezza, per cui si potrà esprimere come: La costante kl dipende dalla lunghezza d’onda di trasmissione (poiché il materiale è dispersivo) e dall’allargamento spettrale del segnale trasmesso Dl, quest’ultima è caratteristica propria del dispositivo di trasmissione (è molto piccolo nei diodi di tipo LASER, indicato nell’ordine di 1nm). La risposta in frequenza della fibra monomodale è pertanto esprimibile come: Che ha caratteristiche passabasso D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Banda passante di una fibra ottica monomodale Si assume che la frequenza di taglio della caratteristica passabasso della fibra ottica monomodale sia la frequenza in corrispondenza della quale il valore di Hl(f) sia la metà di quello assunto in f=0. Questo valore è dato da: Poiché sappiamo che tl è funzione di L attraverso la costante kl, potremo scrivere che: ove: (espresso in GHz*Km) in caso di completa assenza di dispersione cromatica (condizione ideale difficile da ottenere) D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Banda passante di una fibra ottica monomodale In particolare, avremo che la risposta in frequenza di una fibra ottica monomodale potrà essere espressa nella seguente maniera: fT = fl è la frequenza di taglio della fibra ottica monomodale. Se la banda del segnale trasmesso è molto minore della frequenza di taglio, allora si può supporre che la linea di trasmissione non introduca nessuna distorsione lineare. Altrimenti si deve supporre che una qualche distorsione sia introdotta e quindi sia necessario utilizzare una qualche forma di equalizzazione in ricezione, in maniera analoga a quanto già visto per le linee in cavo coassiale. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Banda passante di una fibra ottica multimodale Nel caso in cui si consideri l’utilizzo (invero svantaggioso) delle fibre ottiche multimodali, la funzione di trasferimento della fibra ottica avrà una caratteristica passabasso ancora più accentuata, in quanto alla dispersione intramodale, dovuta alla natura dispersiva del materiale si aggiunge la dispersione intermodale, dovuta alla presenza di diversi modi di trasmissione nella fibra. Abbiamo visto che il massimo ritardo differenziale dovuto alla dispersione intermodale è pari a: Quindi, l’allargamento temporale dell’impulso dovuta alla dispersione intermodale tm è anch’esso proporzionale alla lunghezza della tratta in fibra. E quindi avremo: km dipende dalla lunghezza d’onda D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Banda passante di una fibra ottica multimodale Per cui, la risposta in frequenza di una fibra ottica multimodale potrà essere espressa come: Ritornando alla notazione vista precedentemente, che utilizza la frequenza di taglio, ossia: Avremo che: Nel caso di fibre monomodali: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Caratteristiche di attenuazione delle fibre ottiche Finora nella trattazione sulle caratteristiche di propagazione delle fibre ottiche abbiamo tralasciato gli aspetti relativi alla perdita di potenza sperimentata dal segnale luminoso durante la propagazione in fibra. Si può verificare sperimentalmente che l’attenuazione della potenza del segnale trasmesso in una fibra ottica ha un andamento esponenziale in funzione della lunghezza del tipo “classico”, ovvero: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Coefficiente di attenuazione Il coefficiente di attenuazione viene usualmente espresso in dB/km, ovvero: Il coefficiente di attenuazione è una caratteristica costruttiva della fibra ottica. Attualmente sono stati raggiunti valori di circa 0.2dB/Km per la terza finestra di trasmissione (l = 1.55mm). Oltre alla perdita di potenza a causa della distanza, vi sono altre fonti di attenuazione del segnale in fibra, che qui citeremo soltanto: Perdita per assorbimento da materiale, dovuta alla presenza nel vetro di impurità metalliche (ad es. Cu, Co, Cr, Fe), oppure di gruppi di ossidrile imprigionati nel reticolo vetroso; Perdita per diffusione di Rayleigh, provocata da disomogeneità del materiale su scala più piccola della lunghezza d’onda, che determinano variazioni microscopiche dell’indice di rifrazione; Perdita per imperfezioni di guida, dovuta a piegature e microfratture della fibra che avvengono durante la posa o per cause meccaniche. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Attenuazione di fibre di nuova generazione D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni PARTE TERZA: DISPOSITIVI DI EMISSIONE E RIVELAZIONE DEL SEGNALE OTTICO D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Caratteristiche delle sorgenti luminose Le sorgenti di segnale ottico per la conversione segnalepotenza luminosa sono: LED (Light Emitting Diodes): sono diodi polarizzati in modo diretto, che danno luogo ad emissione di fotoni, che sono funzione dell’intensità della corrente che li attraversa. L’emissione di luce generata dalla giunzione viene solo parzialmente convogliata nella fibra. Esistono LED a emissione di superficie (SLED) e LED a emissione laterale (ELED), a seconda che la sezione terminale della fibra a contatto col diodo sia disposta ortogonalmente rispetto al piano di giunzione o parallelamente ad esso. LASER (Light Amplification of Stimulated Emission of Radiation): sono anch’essi diodi polarizzati in modo diretto, ma con una geometria a strati che crea direzioni privilegiate di emissione ed un effetto di risonanza ottica. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Sorgenti LED I LED usati per scopi di telecomunicazione sono solitamente del tipo ad alta efficienza, con radianze comprese tra 20 e 100W/angolo solido*cm2. A causa della natura isotropica della sorgente e dell’elevato indice di rifrazione del semiconduttore, solo una piccola frazione della potenza generata fuoriesce dal diodo, e solo una piccola parte di essa viene iniettata nella fibra. La massima potenza iniettabile in una fibra può calcolarsi attraverso la seguente formula: Ra = radianza del diodo LED; d = min(2a,dL); 2a = diametro del core; dL = diametro dell’area di emissione; = apertura numerica della fibra k vale 1 per fibre step-index e 2 per fibre graded-index. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Sorgenti LED Le caratteristiche corrente di eccitazione potenza luminosa di un diodo LED e di un diodo LASER sono riportate nella figura sottostante. Si vede che la caratteristica del diodo LED presenta un’accettabile linearità solo per potenze emesse opportunamente inferiori al massimo valore. I diodi LED, inoltre, riducono la loro efficienza al crescere della frequenza della corrente di eccitazione. Ciò è dovuto a dissipazioni legate alla capacità non nulla della giunzione (il LED è assimilabile ad un circuito RC). Per cui i diodi LED hanno un comportamento passabasso: fs compresa tra 50 e 100MHz. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Sorgenti LASER Le sorgenti LASER sono caratterizzate da direzioni di emissione privilegiate (quindi non sono sorgenti isotrope) e da effetti di risonanza ottica. La direttività dell’emissione consente di ridurre grandemente l’allargamento spettrale del segnale luminoso prodotto (Dl pari a circa 1nm in seconda finestra contro 0.25mm registrati per una sorgente LED), e quindi di ridurre la dispersione cromatica propria delle fibre ottiche (in particolare, nelle fibre monomodali, la dispersione cromatica è l’unica fonte di distorsione del segnale). Anche l’efficienza spettrale delle sorgenti LASER è maggiore rispetto a quella delle sorgenti LED. La frequenza di taglio fs è difatti dell’ordine di 1GHz. Di converso, le sorgenti LASER presentano caratteristiche sfavorevoli di non linearità della caratteristica corrente di eccitazione potenza luminosa, soprattutto per basse correnti di eccitazione (vedere figura nella slide precedente) ed una vita media operativa piuttosto ridotta (circa 1/10 rispetto a quella dei LED). D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Caratteristiche dei fotorivelatori Un fotorivelatore è un diodo polarizzato inversamente che dà luogo a conduzione di corrente quando viene colpito da un fascio luminoso. Nella figura sottostante è mostrato un tipico circuito di fotorivelazione, in cui il diodo viene attraversato da un fascio luminoso, produce una corrente i(t) direttamente proporzionale alla potenza luminosa ricevuta e quindi una tensione ad essa proporzionale ai capi di una resistenza R, che viene successivamente amplificata e fatta passare attraverso un filtro con una opportuna funzione di trasferimento. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Funzionamento di un diodo fotorivelatore Il numero di fotoni al secondo costituenti il fascio incidente è dato da : dove: wR è la potenza luminosa in uscita dalla fibra(Watt); h=6.62510-34 Js è la costante di Plank; c=3109 m/s è la velocità della luce; è la lunghezza d’onda della luce incidente; è l’energia di un fotone. Un singolo fotone può dar luogo alla generazione di una coppia elettrone/lacuna che attraversa la zona di svuotamento, accelerata dalla tensione inversa, e produce un impulso di corrente q(t) di durata estremamente breve (1 nsec) e di area q (carica dell’elettrone=1.610-19). D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Funzionamento di un diodo fotorivelatore Se la tensione inversa applicata al diodo è sufficientemente elevata, l’elettrone generato da un fotone ha la possibilità di generare altre coppie elettroni/lacune, dando luogo a g impulsi di corrente q(t). Detto qi l’istante di arrivo del fotone i, si ha che: in cui è una realizzazione della variabile aleatoria G, di valore atteso e varianza . Questo effetto, detto fotomoltiplicazione, o effetto valanga, non si verifica se la tensione applicata al diodo è bassa. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Funzionamento di un diodo fotorivelatore Supponendo che il numero di arrivi al secondo abbia distribuzione di Poisson con valore atteso: (in cui è il rapporto (1) tra il numero di coppie elettroni/lacune generate e il numero di fotoni incidenti), si ha che il valor medio della corrente prodotta dal diodo è: La corrente in uscita dal fotodiodo può essere espressa come somma di un termine costante (che è il valor medio) e di un termine tempo-variante che esprime lo scostamento di tale grandezza dal valor medio, ovvero: Responsività del fotodiodo iR è il valor medio nel tempo di i(t), che coincide con il suo valore atteso (processo ergodico); iq(t) è il rumore quantico, e rappresenta la variabilità di i(t) attorno al suo valore medio. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Funzionamento di un diodo fotorivelatore Diodo PIN: la tensione inversa applicata al diodo è bassa (-30v), quindi l’effetto di moltiplicazione degli elettroni non si verifica e risulta sempre (per cui e ). Diodo a valanga: la tensione inversa è elevata, mg è controllabile attraverso il valore della tensione inversa. Si definisce il FATTORE DI RUMORE DEL FOTOMOLTIPLICATORE(*): La curva è stata determinata sperimentalmente : in cui a vale 0.5 per diodi al germanio e 0.150.25 per diodi al silicio ( ). (*)Analogo del fattore di rumore del filtro visto per rumore termico nel caso dei cavi D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Fibre ottiche per comunicazioni e dispositivi di emissione del segnale: status 1995 D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Gamma delle lunghezze d’onda per la trasmissione in fibra L’ ITU-T ha suddiviso il campo delle lunghezze d’onda per la trasmissione in fibra ottica nelle sei seguenti bande: Banda Nome Campo O - Band Original 1260 – 1360 nm E - Band Extended 1360 – 1460 nm S - Band Short wavelength 1460 – 1530 nm C - Band Conventional 1530 – 1565 nm L - Band Long wavelength 1565 – 1625 nm U - Band Ultralong wavelength 1625 – 1675 nm Banda complessiva disponibile 50 THz D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Altri problemi della trasmissione su fibra ottica Dispersione di polarizzazione Legata alla diversa velocità di propagazione delle due componenti ortogonali del campo e.m. Effetto: allargamento dell’impulso nel tempo Dipendente da fattori di costruzione e posa della fibra e da parametri fisici tempovarianti tra cui la temperatura Valori tipici compresi tra 0.2 e 0.5 ps/km-2 Non linearità della fibra Per valori elevati di intensità del campo e.m. che attraversa la fibra, l’indice di rifrazione può mostrare dipendenza dall’intensità stessa La non linearità più nota e problematica è l’interazione a quattro fotoni (Four Wave Mixing FWM) Essa dà origine a repliche del sengale a lunghezze d’onda diverse Provoca quindi rumore e/o diafonia Il problema diventa rilevante in sistemi che trasmettono lunghezze d’onda multiple D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni PARTE QUARTA: ANALISI DELLE PRESTAZIONI DI UN COLLEGAMENTO IN FIBRA OTTICA D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Prestazioni di un collegamento in fibra ottica per trasmissioni analogiche La caratteristica corrente in ingressopotenza in uscita è lineare solo se soddisfa le seguenti limitazioni: Max potenza nella fibra D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni La funzione del blocco M è appunto quella di trasformare il segnale utile allo scopo di rendere il segnale di eccitazione tale da soddisfare queste limitazioni. Osservazione: Se la banda occupata dal segnale è sensibilmente inferiore al valore di , nella banda occupata dal segnale e la fibra NON introduce distorsione lineare. Il fattore di conversione potenza ricevutacorrente di uscita del fotodiodo è pari a , in cui è la responsività del fotodiodo (0.5 Ampere/Watt) ed mg è il numero medio di coppie elettrone/lacune generate a partire da un fotone incidente ( per un diodo PIN, fino a 300 per un diodo a valanga). Ritardo della fibra :viene trascurato come shift temporale, se ne tiene conto come distorsione .((t) diventa gaussiana) fibra :f=fT tale che HD(f) = 1/2 (non è proprio f. di taglio) D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni è il RUMORE QUANTICO; il suo spettro di densità di potenza può assumersi uniforme (fino a qualche GHz) pari a rappresenta un rumore di natura termica; il suo spettro di densità di potenza vale Il filtro di ricezione ha lo scopo di eliminare il rumore al di fuori della banda del segnale ed equalizzare il comportamento della fibra dovuto al termine . Il calcolo del rapporto segnale/rumore verrà effettuato all’uscita del filtro di ricezione nei due casi seguenti: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni eccitazione costante (caso A) eccitazione pari ad una costante positiva più una componente a valor medio nullo, funzione del segnale utile: , (caso B) In entrambi i casi wT indica il massimo valore della potenza immessa nella fibra(Hc 2 costante con f se si va nel range giusto (con M)). ll segnale si ritiene membro di un processo aleatorio stazionario, di spettro di densità di potenza noto . Due termini tengono conto del rumore: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Lo spettro di densità di potenza del segnale di eccitazione vale: (caso A) (caso B) Il segnale all’ingresso del fotodiodo vale: , dato che Quindi: Delta di Dirac in f (caso B) Ipotesi di Ex(t) = 0 D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Dopo il filtro di ricezione si hanno tre contributi: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Per ottenere le potenze totali dei segnali in questione e sufficiente integrare da - a + gli spettri di densità di potenza ora calcolati. Introduciamo le seguenti approssimazioni: 1. si trascura la distorsione della fibra [ ]; 2. si ritiene che sia un passa-basso ideale con frequenza di taglio pari alla banda B dei segnali: Con queste approssimazioni: (comp.utile del segnale in uscita, nel caso B è solo quella associata ad x(t), non al valor medio) D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Notazione: . Essendo HD(f) 1 Caso A: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni migliora linearmente con la potenza luminosa ricevuta e con la responsività del fotodiodo; peggiora all’aumentare del fattore di rumore del fotomoltiplicatore e della larghezza di banda. sarebbe meglio usare diodi PIN ( , ). ( 0.5) /29|dB migliora col quadrato della potenza luminosa e del guadagno di fotomoltiplicazione(=mg); D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni sembrerebbe che un valore molto grande di R possa annullare l’effetto del rumore termico, ma non si tiene in conto della capacità di uscita C del diodo che, in parallelo ad R, dà luogo ad un comportamento passa-basso con frequenza di taglio . Si può compensare tramite l’amplificatore di ingresso, facendo in modo che la frequenza di taglio sia una frazione abbastanza grande della banda B: Con R massima: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni ingloba tutti gli effetti del gruppo fotodiodo-amplificatore agli effetti della valutazione del rumore termico. Supponendo e si ha: L’andamento complessivo è mostrato nel grafico seguente: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni I due SNR sono uguali per , , ( ) Se si impiegano diodi PIN e non si richiedono valori di rapporto segnale/rumore molto elevati (wr non molto elevato), il rumore prevalente è quello termico. Per diodi a valanga, il valore ottimo da attribuire ad mg è quello per cui è massimo il rapporto segnale/rumore complessivo (ottenibile uguagliando a zero la derivata di SNRA rispetto ad mg): , se ; altrove per Condizione di uso dei diodi a valanga D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Assumendo , , : per Caso B: Il contributo del rumore quantico è dimezzato, mentre il segnale utile è inferiore in quanto è pari al valore utilizzato in precedenza moltiplicato per , in cui è la potenza del segnale con la limitazione . Si verifica una riduzione della potenza utile: Quindi, rispetto al caso A: D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni EQUALIZZAZIONE DI UN COLLEGAMENTO IN FIBRA OTTICA Il problema si pone: nel caso B esaminato in precedenza; quando la distorsione introdotta dalla fibra a causa di diventa sensibile; quando la banda B del segnale diventa confrontabile con la frequenza di taglio . in cui è la FdT complessiva incontrata dal segnale nel transito attraverso il collegamento, e è il rapporto segnale/rumore valutato nel precedente caso B. D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Consideriamo il caso ideale in cui è nullo fuori della banda del segnale ed entro tale banda dà luogo ad una perfetta equalizzazione ( per ): per Supponendo uniforme tra -B e B (zero altrove): per si ricava che il rapporto segnale/rumore diminuisce di Il peggioramento in dB del rapporto segnale/rumore dovuto alla presenza di dispersione della fibra è quindi: 6dB se B fT piccolo se B << fT D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Prestazioni di un collegamento in fibra ottica per trasmissioni numeriche È del tutto simile a quanto visto per il cavo coassiale: , con dove R2 è il rapporto segnale/rumore all’uscita della fibra. Ipotesi: impulso di dati rettangolare di durata TL;(approx utile per calcolare Px) 2 livelli (L=2); [ assume solo i valori +1 e -1].(caso più frequente) Il rapporto segnale/rumore R2 è pari al valore ricavato nel caso A, peggiorato delle quantità dovute all’effetto del rumore termico e del rumore quantico con . D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Assumendo validi i dati utilizzati nel precedente esempio e considerando anche il peggioramento introdotto dalla dispersione della fibra equalizzata da HR: ( = attenuazione kilometrica della fibra) Per il dimensionamento, volendo ottenere : avendo assunto , . PEGGIORAMENTO MAX tra i 3dB di rum,q e i 6dB di rum,n D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni dove , e La limitazione in lunghezza della fibra ha origine da attenuazione kilometrica (espressa dal termine ); dispersione della fibra (espressa dai termini e ). D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Se pongo : Se invece : Lunghezza di tratta in km per e per Mbit/s; il primo numero non tiene conto della dispersione, il secondo non tiene conto dell’attenuazione della fibra. Tab. v1/v2 Risultato : L<min v1,v2 TdB dipende dalla sorgente luminosa (SLED,LASER) D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Sistemi di trasmissione WDM Sono sistemi multicanale (Wavelength Division Multiplexing) che trasmettono diverse lunghezze d’onda sulla stessa fibra. Esistono due categorie principali: Dense Wavelength Division Multiplexing (DWDM) con spaziatura tra I canali di circa 100 GHz Coarse Wavelength Division Multiplexing (CWDM) con spaziatura tra I canali di circa 1600 GHz D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova
Sistemi di Telecomunicazioni Sistemi di trasmissione DWDM I sistemi DWDM sono in grado di trasmettere fino a 40 canali da 10 Gbit/s ciascuno in banda C (1530-1565 nm) su distanze di oltre 100 Km senza rigenerazione intermedia. In banda C+L (1530-1625 nm) si possono invece trasmettere tra gli 80 ed I 160 canali a 10 Gbit/s su distanze di oltre 1000 Km. La capacità complessiva di un sistema DWDM su una singola coppia di fibre è di oltre 1 Tbit/s (1 Terabit al secondo = 1000 Gbit/s) Sistemi di trasmissione CWDM I sistemi DWDM sono in grado di trasmettere un numero limitato di canali (circa 18) da 2.5 Gbit/s ciascuno su un’estesa gamma di lunghezze d’onda (1260-1610 nm banda O+E+S+C+L) Le distanze massime consentite dal sistema sono limitate a circa 80 Km poichè non esistono ancora amplificatori con banda così larga Richiedono fibre senza picco di attenuazione da Ossidrile OH- Nonostante le limitazioni, sono molto utilizzati grazie al costo sensibilmente inferiore rispetto ai sistemi DWDM D.I.B.E.-Università di Genova D.I.B.E.-Università di Genova