Aspetti algoritmici connessi alla sicurezza nei sistemi informatici distribuiti
Testo consigliato Crittografia, P. Ferragina e F. Luccio, Ed. Bollati Boringhieri, € 16.
Sommario Introduzione Crittografia Applicazioni di network security computer security e network security attacchi, meccanismi, servizi Crittografia Crittografia a chiave privata Crittografia a chiave pubblica Applicazioni di network security servizi di autenticazione (firma digitale)
Computer security vs network security Computer security: strumenti automatici per proteggere le informazioni di un calcolatore Network security: misure per proteggere lo scambio di informazioni durante la loro trasmissione
Network security Nuovi paradigmi Nuove problematiche di sicurezza informazioni distribuite accesso tramite sistemi distribuiti Nuove problematiche di sicurezza sicurezza delle reti locali da attacchi esterni da impiegati infedeli sicurezza delle applicazioni (e-mail, http, ftp,…) fondamentali per le funzioni aziendali e il commercio elettronico
Problemi base Le reti sono insicure perché molte delle comunicazioni avvengono in chiaro Spesso non c’è autenticazione dei server, ma solo (e non sempre) degli utenti Le connessioni geografiche non avvengono tramite linee punto-punto ma attraverso linee condivise tramite router di terzi
Sicurezza: aspetti fondamentali Attacchi alla sicurezza: azioni che violano la sicurezza delle informazioni possedute da un'organizzazione Meccanismi di sicurezza: misure hardware e software progettate per prevenire e contrastare gli attacchi alla sicurezza Servizi di sicurezza: servizi che garantiscono la sicurezza delle informazioni mediante l’uso di uno o più meccanismi di sicurezza
Attacchi alla sicurezza
Meccanismi di sicurezza Esiste una grande varietà di meccanismi di sicurezza, sia hardware che software, quasi tutti basati su tecniche crittografiche La crittografia (dal greco kryptos, nascosto, e graphein, scrivere) è la disciplina che si occupa dello studio delle scritture “segrete”. Insieme delle tecniche che consentono di realizzare la cifratura di un testo e la decifrazione di un crittogramma. (Dizionario Garzanti, 1972)
Servizi di sicurezza: esempi Segretezza: evitare che i dati inviati da un soggetto A a un soggetto B vengano compresi da un terzo soggetto C. Autenticazione: verificare l’identità di chi manda o riceve i dati. Integrità: essere sicuri che i dati ricevuti siano uguali a quelli inviati. Non ripudio: evitare che chi manda dei dati possa in futuro negare di averli mandati (firma digitale).
Garantire segretezza e integrità
Garantire segretezza e integrità Principio di Kerckhoffs: “La sicurezza di un sistema crittografico deve essere basata esclusivamente sulla inespugnabilità della chiave di cifratura (gli algoritmi di cifratura e decifratura devono essere considerati noti).”
Crittografia: cenni storici La crittografia è una scienza antichissima utilizzata nell’antichità per nascondere il contenuto di messaggi scritti La crittografia conobbe un enorme sviluppo durante la Seconda Guerra Mondiale, quando il matematico inglese Alan Turing formalizzò la teoria necessaria per decrittare il crittosistema tedesco Enigma.
Crittografia moderna Nel 1949 C. Shannon pubblicò un articolo che diede l’inizio a quella che oggi viene chiamata la Teoria dell’Informazione. L’unione di questa nuova scienza, della Teoria della Probabilità, della Teoria della Complessità e della Teoria dei Numeri diede vita alla Crittografia Moderna. Definizione: Un crittosistema è una quintupla (P,C,K,Cod,Dec), dove, P: insieme finito dei testi in chiaro C: insieme finito dei testi cifrati K: insieme delle possibili chiavi di cifratura Cod: PK→C funzione di cifratura (iniettiva e invertibile) Dec: CK→P funzione di decifratura
Proprietà di un crittosistema Se Cod e Dec utilizzano la stessa chiave per cifrare e decifrare un dato testo, allora si parla di crittosistema simmetrico, altrimenti di crittosistema asimmetrico. Un crittosistema si dice perfetto se il testo in chiaro e quello cifrato sono statisticamente indipendenti. Shannon ha dimostrato che condizione necessaria affinché un crittosistema sia perfetto è che la lunghezza della chiave sia almeno pari alla lunghezza del testo da cifrare
Un cifrario perfetto One-time pad (G. Verman, AT&T, 1917): 1. Si costruisce una grande chiave casuale (e non pseudocasuale) ad esempio utilizzando un rivelatore di raggi cosmici. 2. Il testo cifrato è costruito tramite uno XOR bit a bit fra il messaggio in chiaro e la chiave casuale. 3. La chiave non deve mai essere riutilizzata (one-time pad).
Dalla perfezione alla realtà… A fronte dei cifrari perfetti (ovvero dimostrabilmente sicuri ma praticamente inutilizzabili) esistono anche cifrari: Computazionalmente sicuri – Il problema crittoanalitico (ovvero di decrittazione di un testo cifrato senza conoscere la chiave) è computazionalmente intrattabile. Probabilisticamente sicuri – Sono cifrari di cui è stata dimostrata l’inattaccabilità, a patto che non si verifichino alcuni eventi probabilisticamente improbabili. Tutti i cifrari moderni realmente utilizzati appartengono alla classe dei computazionalmente sicuri.
Algoritmi a chiave simmetrica Chiave simmetrica: i due soggetti (A e B) usano la stessa chiave K per codificare e decodificare i dati. Gli algoritmi di crittografia sono pubblici la chiave simmetrica deve essere segreta il principale problema è lo scambio della chiave!
Lo scenario a chiave simmetrica
Il problema della trasmissione della chiave Volendo utilizzare un cifrario simmetrico per proteggere le informazioni tra due interlocutori come posso scambiare la chiave segreta? Devo utilizzare una canale sicuro di comunicazione!
Un primo esempio di cifrario a chiave simmetrica: il cifrario di Cesare Consideriamo l’alfabeto italiano, e costruiamo un cifrario che sostituisce ad ogni lettera di questo alfabeto la lettera che si trova 3 posizioni in avanti. Ad esempio il testo in chiaro “algoritmo distribuito” viene cifrato nel crittogramma “dolrunzpr gnvzuneanzr”. Facilmente attaccabile tramite approcci statistici.
La crittoanalisi statistica Tramite l’utilizzo di tecniche statistiche sulla frequenze dei caratteri o sottostringhe del testo cifrato si ottengono informazioni utili sul testo in chiaro.
Crittoanalisi del cifrario di Cesare Il cifrario di Cesare, come la maggior parte dei cifrari storici basati tu trasposizioni e traslazioni, può essere facilmente violato utilizzando tecniche statistiche (crittoanalisi statistica). Si analizzano le frequenze relative dei caratteri nel testo cifrato e le si confrontano con quelle di una lingua conosciuta, ad esempio l'italiano. Con queste informazioni si ottiene un’ottima approssimazione del testo in chiaro
Lo stato dell’arte nella crittografia a chiave simmetrica: Rijndael Sviluppato da Joan Daemen e Vincent Rijmen. Questo algoritmo ha vinto la selezione per l’Advanced Encryption Standard (AES) nel 2000. Ufficialmente il Rijndael è diventato lo standard per la cifratura del XXI secolo a chiavi simmetriche. Il cifrario utilizza chiavi di lunghezza variabile a 128, 192, 256 bit, ed una rete di “confusione del messaggio”, in cui si eseguono molteplici operazioni di trasposizione, xoring e sostituzione di blocchi di messaggio di lunghezza prefissata.
I limiti dei metodi a chiave simmetrica Un canale sicuro di comunicazione per scambiarsi la chiave segreta esiste veramente nella realtà? E se esistesse, perché ricorrere alla crittografia??? Inoltre, per una comunicazione sicura tra n utenti, si dovranno scambiare in tutto (n-1)*n/2 chiavi, ad esempio con 100 utenti occorreranno 4950 chiavi!
Algoritmi a chiave asimmetrica Chiave Pubblica/Privata: Ogni soggetto S ha una propria chiave pubblica Kpub(S), nota a tutti; una propria chiave privata Kpriv(S) nota solo a lui. I requisiti che un algoritmo a chiave pubblica deve soddisfare sono: i dati codificati con una delle chiavi possono essere decodificati solo con l’altra; la chiave privata non deve mai essere trasmessa in rete; deve essere molto difficile ricavare una chiave dall’altra (in particolare la chiave privata da quella pubblica).
I vari scenari a chiave pubblica Primo scenario: A codifica con la chiave pubblica associata a B, il quale decodifica con la propria chiave privata: garantisce segretezza e integrità.
I vari scenari a chiave pubblica Secondo scenario: A codifica con la propria chiave privata il messaggio da inviare a B, il quale decodifica con la chiave pubblica associata ad A: garantisce autenticità e non ripudiabilità!
I vari scenari a chiave pubblica Terzo scenario: A codifica con la chiave pubblica associata a B ed autentica con la propria chiave privata: garantisce segretezza, integrità, autenticità e non ripudiabilità!
La nascita dei sistemi PKI Dove trovo le chiavi pubbliche dei miei destinatari? Creazione di “archivi di chiavi pubbliche”, i public key server. Ma chi mi garantisce la corrispondenza delle chiavi pubbliche con i legittimi proprietari? Nascita delle certification authority (CA). A questo punto chi garantisce la validità delle certification authority? Atto di fede!
La matematica dei sistemi a chiave pubblica Venne introdotta da Diffie e Hellman nel 1976: Definizione: Una funzione f si dice one-way se per ogni x il calcolo computazionale di y=f(x) è semplice (è in P), mentre il calcolo di x=f-1(y) è computazionalmente difficile (è NP-hard). Definizione: Una funzione one-way è detta trapdoor (letteralmente, cassetta delle lettere) se il calcolo x=f-1(y) può essere reso facile qualora si conoscano informazioni aggiuntive (private). … ma purtroppo per loro, essi non furono in grado di costruire una funzione one-way trapdoor!
Il cifrario RSA Progettato nel 1977 da Ron Rivest, Adi Shamir e Leonard Adlemann, il cifrario è stato brevettato, ed è diventato di dominio pubblico solo nel 2000. Idea base: Dati due numeri primi p e q (molto grandi) è facile calcolare il prodotto n=p∙q, mentre è molto difficile calcolare la fattorizzazione di n (anche se tale problema non è noto essere NP-hard). I migliori algoritmi di fattorizzazione attualmente disponibili (Quadratic Sieve, Elliptic Curve Method, Euristica ρ di Pollard, ecc.) hanno tutti una complessità esponenziale dell’ordine di:
Il cifrario RSA Per garantire la sicurezza, occorre che p e q siano almeno di 200 cifre decimali. Infatti, se p e q sono di 200 cifre decimali ciascuno, allora n è di 400 digit, cioè dell’ordine di 10400, da cui: O(∙)≈e79≈1034 da cui l’intrattabilità computazionale. le chiavi sono lunghe in genere 1024 bitS. RSA è molto più lento degli algoritmi a chiave simmetrica, e spesso viene applicato a piccole quantità di dati, ad esempio per la trasmissione della chiave privata in un sistema simmetrico
Funzionamento di RSA: generazione delle chiavi Ricorda: xy mod z il resto della divisione intera tra x e z e tra y e z è lo stesso, ovvero x mod z = y mod z (o equivalentemente, se esiste un intero k t.c. x=y+kn) 1. Scegli due primi molto grandi p e q e calcola n =p∙q. 2. Calcola la funzione toziente di Eulero rispetto ad n, ovvero la cardinalità dell’insieme dei numeri minori di n e primi con esso: ϕ(n)=ϕ(pq)=pq-[(q-1)+(p-1)]-1=pq-(p+q)+1= =(p-1)(q-1)=ϕ(p)ϕ(q) (poiché esistono q-1 multipli di p minori di n e p-1 multipli di q minori di n) 3. Scegli un numero 0<e<ϕ(n) t.c. MCD(e,ϕ(n))=1. 4. Calcola d tale che e·d1 mod ϕ(n). 5. Definisci la chiave pubblica come (e,n). 6. Definisci la chiave privata come (d,n).
Funzionamento di RSA Invio di un messaggio cifrato La funzione di cifratura di A è Cod(x)=xe mod n (con x<n), ove (e,n) è la chiave pubblica del destinatario B. La funzione di decifratura di B è: Dec(x)=Cod(x)d mod n = (xe mod n)d mod n ove (d,n) è la chiave privata di B. Autenticazione di un messaggio La funzione di cifratura di A è Cod(x)=xe mod n (con x<n), ove (e,n) è la chiave privata di A. La funzione di decifratura di B è: Dec(x)=Cod(x)d mod n = (xe mod n)d mod n ove (d,n) è la chiave pubblica di A.
Correttezza di RSA: alcuni teoremi di algebra modulare Teorema (equazioni modulari): L’equazione axb mod n ammette soluzione se e solo se MCD(a,n) divide b. In questo caso si hanno esattamente MCD(a,n) soluzioni distinte. Corollario (esistenza dell’inverso): Se a e n sono primi tra loro, allora ax1 mod n ammette esattamente una soluzione, detta l’inverso di a modulo n. Teorema di Eulero: Per ogni n>1, e per ogni a primo con n, si ha che aϕ(n)1 mod n. Corollario (Piccolo teorema di Fermat): Per ogni primo n>1, e per ogni a{1,…,n-1}, si ha che an-11 mod n (ovvero, ana mod n). Teorema cinese del resto: Siano n1, n2,…, nk primi tra loro a due a due, e sia n= n1·n2 ·…·nk. Allora, comunque si scelgano degli interi a1, a2,…, ak, esiste almeno un intero x soluzione del sistema di congruenze xai mod ni i=1,..,k. e tutte le soluzioni di tale sistema, sono congruenti modulo n.
Dec(Cod(x))=(xe mod n)d mod n=xed mod n, Correttezza di RSA Si noti innanzitutto che e e ϕ(n) sono primi tra loro, e quindi dal corollario sull’esistenza dell’inverso, esiste un unico d minore di ϕ(n) tale che e∙d1 mod ϕ(n). Qui sta la forza di RSA: per ricavare d da e bisogna conosce-re ϕ(n), cioè p e q, e quindi bisogna saper fattorizzare! Ora occorre provare che per ogni x<n, Dec(Cod(x))=x. Ma Dec(Cod(x))=(xe mod n)d mod n=xed mod n, quindi dobbiamo mostrare che x=xed mod n. Distinguiamo due casi: p e q non dividono x (e quindi MCD(p,x)=MCD(q,x)=1, poiché essi sono primi); p (oppure q) divide x, ma q (oppure p) non divide x. (si noti che p e q non possono entrambi dividere x, perché altrimenti si avrebbe x≥n contro le ipotesi)
Correttezza di RSA (2) Caso 1: Abbiamo MCD(x,n)=1, quindi per il th di Eulero, risulta xϕ(n)1 mod n; poiché ed1 mod ϕ(n), si ha che ed=1+kϕ(n), per un k opportuno. Quindi, poiché x<n, si ha: xed mod n = x1+kϕ(n) mod n = x·(xϕ(n))k mod n = x·1k mod n = x. Caso 2: Poiché p divide x, abbiamo xxk0 mod p, ovvero (xk-x)0 mod p, per qualunque intero positivo k. Poiché invece q non divide x, analogamente al Caso 1, abbiamo anche xedx mod q, e quindi (xed-x)0 mod q. Ne consegue che (xed-x) è divisibile sia per p che per q, e quindi per il loro prodotto n, da cui deriva (xed-x)0 mod n xedx mod n xed mod n = x mod n = x. □ Si noti che RSA gode della notevole proprietà: Dec(Cod(x))=Cod(Dec(x)).
Esempio di funzionamento di RSA B sceglie ad esempio p=3 e q=11. Quindi n=33 e ϕ(n)=20. Si può prendere e=3, poiché 3 non ha divisori comuni con 20 (3,33) è la chiave pubblica di B Cerco d t.c. 3d1 mod 20. Con l’equazione 3d= 1+k·20, ponendo k=1 si trova d=7 (7,33) è la chiave privata di B Per cifrare un blocco P (P<33) da inviare a B, A calcola C:=Cod(P)=P3 mod 33 Per decifrare C, B calcola P=C7mod 33 Poiché n=33, si cifrano al più 5 bit alla volta (25<33) Nella pratica, n è dell’ordine di 21024, e quindi si possono cifrare blocchi di 1024 bit, cioè blocchi di 128 caratteri ASCII (di 8 bit ciascuno).
Esempio di funzionamento di RSA Per visualizzare l’esempio precedente, supponiamo per semplicità che le 26 lettere dell’alfabeto inglese possano essere codificate con 5 bit, e quindi poiché n=33, posso cifrare un carattere alla volta
Complessità computazionale di RSA Si può dimostrare che le chiavi (e quindi p,q,e,d) possono essere generate in tempo polinomiale (ovvero logaritmico nel loro valore). In particolare, e viene in genere scelto prendendo un numero primo abbastanza piccolo (ad esempio, e=3). Invece, d viene ricavato mediante un’estensione (polinomiale) dell’algoritmo di Euclide per il calcolo del MCD (basato sul fatto che MCD(a,b)=MCD(b,a mod b)). Tuttavia, per trovare numeri primi molto grandi (cioè p e q), i test di primalità utilizzati sono tutti di tipo probabilistico, in quanto quelli deterministici sono troppo lenti (sebbene polinomiali, ma dell’ordine di O(log10n)). Infine, si noti che i processi di cifratura e decifrazione possono essere eseguiti efficientemente tramite successive esponenziazioni (potenza modulare).
Alla ricerca di p e q Definizione (Algoritmo Monte Carlo): Un algoritmo Monte Carlo “no-biased” è un algoritmo randomizzato per la risoluzione di un dato problema di decisione, in cui la risposta “no” è sempre corretta, mentre la risposta “si” può essere inesatta con probabilità fissata ε. Analogamente sono definiti gli algoritmi Monte Carlo “yes-biased”. L’algoritmo di Miller e Rabin è un algoritmo Monte Carlo “no-biased” per testare la primalità di un numero. Esso ha una complessità di O(log3 n), e una probabilità di inesattezza ε≈1/4 (cioè se risponde SI, è corretto con probabilità ≈3/4).
Algoritmo di Miller-Rabin E’ basato sulla seguente proprietà: per un intero n dispari, e per un qualche 2≤y≤n, poniamo y-1=2wz, con z dispari (quindi w è il max esponente consentito per 2), e definiamo i 2 predicati: (P1): MCD(n,y)=1; (P2): (yz mod n = 1) OR (esiste 0≤i≤w-1 t.c. y2iz mod n=-1). Teorema: Se n è primo soddisfa entrambi i predicati, mentre se n è composto il numero di interi compresi tra 1 e n-1 che soddisfano entrambi i predicati è minore di n/4. Eseguiamo MR(n) un certo numero k di volte, testando ogni volta i due predicati su un intero a caso minore di n. Se l’algoritmo risponde “no” anche una sola volta il numero è sicuramente composto, mentre se risponde sempre “si”, la probabilità che il numero sia composto è 4-k, e quindi la probabilità che il numero sia primo è: P(primo)=1-P(composto)=1-4-k (ad es., se k=100, si ha P≈1-10-60 ≈ 1)
Algoritmo di Miller-Rabin Miller-Rabin(n) Set n-1=2sr con r dispari For i=1 to k do 2.1 scegli a caso un intero t t.c. 2≤t≤n-2 2.2 calcola y=tr mod n 2.3 if y≠1 esegui 2.3.1 j=1 2.3.2 while ((j≤s-1) and (y≠n-1)) y:=t2jr mod n j++ 2.3.3 if y≠n-1 ritorna composto Ritorna primo (w.h.p. 1-4-k)
E’ facile trovare numeri primi? Nonostante l’efficienza nel testare se un numero sia primo o meno resta l’incognita se i numeri primi siano “pochi” e quindi difficili da scovare. Teorema di Gauss (dei numeri primi): Sia π(n) la funzione di distribuzione dei numeri primi, cioè il numero di numeri primi che precedono n. Allora essa soddisfa il seguente: Quindi se si cerca un numero primo di 100 cifre occorre verificare “solo” ln (10100) ≈ 230 numeri consecutivi.