Visite di grafi Algoritmi e Strutture Dati. Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © 2004 - The McGraw.

Slides:



Advertisements
Presentazioni simili
Algoritmi e Strutture Dati
Advertisements

Il problema della ricerca Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Grafi Algoritmi e Strutture Dati. Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Algoritmi e strutture dati 2/ed 2 Copyright © The McGraw.
Algoritmi e Strutture Dati
Breath-first search Visita in ampiezza di un grafo Algoritmo Esempio
Capitolo 3 Strutture dati elementari Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Stesso approccio.
Capitolo 3 Strutture dati elementari Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Capitolo 4 Ordinamento Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
Capitolo 3 Strutture dati elementari Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Stesso approccio.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Strutture dati per.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 12 Minimo albero ricoprente: Algoritmi di Prim e di Borůvka Algoritmi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Stesso approccio.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Interrogazioni.
Capitolo 13 Cammini minimi: Algoritmo di Floyd e Warshall Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 12 Minimo albero ricoprente: Algoritmi di Prim e di Borůvka Algoritmi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 8 Code con.
Il problema della ricerca Algoritmi e Strutture Dati.
Capitolo 11 Grafi e visite di grafi Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 12 Minimo albero ricoprente: Algoritmi di Prim e di Boruvka Algoritmi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 8 Code con.
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Capitolo 9 Il problema della gestione di insiemi disgiunti (Union-find) Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Algoritmi e Strutture Dati Capitolo 2 Modelli di calcolo e metodologie.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 12 Minimo albero ricoprente: Algoritmi di Prim e di Borůvka Algoritmi.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Un albero è un grafo.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Alberi AVL (Adelson-Velskii.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Rotazioni.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Diremo che f(n) =
Capitolo 11 Grafi e visite di grafi Algoritmi e Strutture Dati.
Capitolo 11 Grafi e visite di grafi Algoritmi e Strutture Dati.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 K 4 è planare? Sì!
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 12 Minimo albero ricoprente: Algoritmi di Prim e di Borůvka Algoritmi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Strutture dati per.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Rotazioni.
Capitolo 13 Cammini minimi: Ordinamento topologico Algoritmi e Strutture Dati.
Capitolo 8 Code con priorità Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
Capitolo 12 Minimo albero ricoprente Algoritmi e Strutture Dati.
Capitolo 12 Minimo albero ricoprente: Algoritmo di Kruskal Algoritmi e Strutture Dati.
Capitolo 13 Cammini minimi Algoritmi e Strutture Dati.
Capitolo 11 Visite di grafi Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Capitolo 13 Cammini minimi: Bellman e Ford Algoritmi e Strutture Dati.
Capitolo 13 Cammini minimi: Algoritmo di ordinamento topologico, di Dijkstra, e di Floyd e Warshall Algoritmi e Strutture Dati.
Analisi asintotica e Metodi di analisi Algoritmi e Strutture Dati.
Capitolo 13 Cammini minimi Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Cammini minimi fra tutte le coppie:
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 12 Minimo albero ricoprente: Algoritmo di Prim Algoritmi e Strutture.
Capitolo 12 Minimo albero ricoprente: Algoritmo di Kruskal Algoritmi e Strutture Dati.
Capitolo 11 Grafi e visite di grafi Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
Capitolo 6 Alberi di ricerca Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
Transcript della presentazione:

Visite di grafi Algoritmi e Strutture Dati

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 2 Algoritmo di visita generica

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 3 Costo della visita Il tempo di esecuzione dipende dalla struttura dati usata per rappresentare il grafo: Lista di archi: O(mn) Liste di adiacenza: O(m+n) Matrice di adiacenza: O(n 2 )

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 4 Visita in ampiezza

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 5 Visita in ampiezza

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 6 Esempio: grafo non orientato (1/2)

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 7 Esempio: grafo non orientato (2/2)

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 8 Esempio: grafo orientato

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 9 Proprietà Per ogni nodo v, il livello di v nellalbero BFS è pari alla distanza di v dalla sorgente s Per ogni arco (u,v) di un grafo non orientato, gli estremi u e v appartengono allo stesso livello o a livelli consecutivi dellalbero BFS Se il grafo è orientato, possono esistere archi (u,v) che attraversano allindietro più di un livello

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 10 Visita in profondità

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 11 Visita in profondità

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 12 Esempio: grafo non orientato (1/2)

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 13 Esempio: grafo non orientato (2/2)

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 14 Esempio: grafo orientato (1/2)

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 15 Esempio: grafo orientato (2/2)

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 16 Proprietà Sia (u,v) un arco di un grafo non orientato. Allora: –(u,v) è un arco dellalbero DFS, oppure – i nodi u e v sono luno discendente/antenato dellaltro Sia (u,v) un arco di un grafo orientato. Allora: –(u,v) è un arco dellalbero DFS, oppure – i nodi u e v sono luno discendente/antenato dellaltro, oppure –(u,v) è un arco trasversale a sinistra, ovvero il vertice v è in un sottoalbero visitato precedentemente ad u

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 17

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 18