aA + bB pP + qQ V = -1/a x d[A]/dt = -1/b x d[B]/dt =1/p x d[P]/dt =1/q x d[Q]/dt DEFINIZIONE di velocità di reazione
r1 + r2 p1 + p2 Sperimentalmente si trova che….. la velocità varia con le concentrazioni v= k[r1] n [r2] m n,m= ordini di reazione, somma degli ordini di reazione dei singoli reagenti= ordine di reazione totale
v= k[…] la velocità è data dal prodotto di concentrazioni per una costante k che sperimentalmente è data dalla seguente equazione: -E a /RT k = A e A = fattore sterico E a = energia dattivazione R = costante universale dei gas T = temperatura assoluta
Da cosa dipende la velocità natura di reagenti e prodotti concentrazioni reagenti (teoria delle collisioni efficaci) temperatura (influenza sul numero di collisioni efficaci) catalizzatori
Esistenza di una barriera TEORIA DELLE COLLISIONI E. di attivazione Energia cinetica numero di molecole COLLISIONI EFFICACI ___________________________
REAZIONI ELEMENTARI avvengono in un solo atto reattivo, gli ordini di reazione coincidono con i coefficienti stechiometrici MOLECOLARITA numero di particelle coinvolte nellatto reattivo, la molecolarità coincide con lordine di reazione totale (somma dei coefficienti stechiometrici) REAZIONI COMPLESSE (SOMMA DI REAZIONI ELEMENTARI)
elementare 2HI V= k[HI] 2 Molecolarità 2
non elementare 2NO2Cl 2NO2 + Cl2 totale v= k1[NO2Cl] Due Stadi: NO2Cl NO2 + Cl lento v= k1[NO2Cl] molecolarità 1 NO2Cl + Cl NO2 + Cl2 veloce v =k2[NO2Cl] [Cl] molecolarità 2 LA VELOCITA E DATA dallo stadio più lento
aA + bB cC + dD per una reazione elementare v =k [A] a [B] b v =k [C] c [D] d EQUILIBRIO La REAZIONE SI ARRESTA QUANDO LE DUE VELOCITA DIRETTA E INVERSA SI EGUAGLIANO aA + bB cC + dD
v =k [A] a [B] b =v =k [C] c [D] d k [A] a [B] b =k [C] c [D] d k / k = [C] c [D] d /[A] a [B] b = K equilibrio PUNTO DINCONTRO TRA TERMODINAMICA E CINETICA
Il catalizzatore è una sostanza in grado di modificare la velocità di una reazione facendone cambiare il meccanismo, modificando quindi il valore dellenergia dattivazione, la barriera da superare, IN Più O IN MENO, CATALISI POSITIVA O NEGATIVA. Teoricamente si recupera inalterato alla fine della reazione. ESEMPIO DI CATALISI POSITIVA
3 H 2 (g) + 1 N 2 (g) 2 NH 3 (g) + calore Azoto e idrogeno reagiscono in rapporto 1:3 a temperatura ottimale tra °C e pressione ottimale di atm utilizzando magnetite (ferro) quale promotore della catalisi. La reazione consiste in un equilibrio chimico in fase gassosa descritto dall'equazione stechiometrica. La reazione è esotermica e sviluppa 92,4 kJ/mol. Le alte pressioni adoperate e la sottrazione dal reattore dell'ammoniaca prodotta per liquefazione spostano l'equilibrio verso destra. Preparazione catalizzatore Fe3O4 + 4H2 3Fe + 4H2O PREPARAZIONE INDUSTRIALE DELLAMMONIACA, processo lento termodinamicamente sfavorito alle alte temperature. CATALISI ETEROGENEA
Il meccanismo di reazione implicato nel processo di catalisi, in base all'adsorbimento superficiale, può così riassumersi: N 2 (g) 2N ads H 2 (g) 2H ads N ads + H ads NH ads NH ads + H ads NH 2ads NH 2ads + H ads NH 3ads NH 3ads NH 3 (g).
K p = (p NH3 ) 2 /(p H2 ) 3 p N2 = (Pχ NH3 ) 2 /(Pχ H2 ) 3 Pχ N2 = P -2 χ NH3 2 /χ H2 3 χ N2 χ NH3 2 /χ H2 3 χ N2 aumenta allaumentare di P perchè K è costante a T costante p pressione parziale P pressione totale Χ frazione molare Lammoniaca liquefa prima a temperatura più alta di idrogeno e azoto perché è una molecola polare. La liquefazione si ottiene per espansione della miscela gassosa (azoto idrogeno ammoniaca) reale che nellespandersi si raffredda perché prende lenergia per rompere i legami intermolecolari dallenergia cinetica Lìequilibrio non si raggiunge mai causa sottrazione del prodotto.
Si devono rompere i legami di molecole non polari. H-H N N Si devono formare i legami di una molecola polare.
CH=CH- + H2 -CH2-CH2- IDROGENAZIONE n presenza di Nickel CATALISI ETEROGENEA
Marmitta catalitica (eterogenea) Reazioni catalizzate 2CO(g) + O 2 (g) 2CO 2 (g) 2NO(g) + 2CO(g) N 2 (g) + 2CO 2 (g) 2C 6 H 6 (g) + 15O 2 12CO 2 (g) +6H 2 O(l)
Catalisi omogenea