Distribuzioni di probabilità

Slides:



Advertisements
Presentazioni simili
Test delle ipotesi Il test consiste nel formulare una ipotesi (ipotesi nulla) e nel verificare se con i dati a disposizione è possibile rifiutarla o no.
Advertisements

8) GLI INTERVALLI DI CONFIDENZA
Stime per intervalli Oltre al valore puntuale di una stima, è interessante conoscere qual è il margine di errore connesso alla stima stessa. Si possono.
2. Introduzione alla probabilità
variabili aleatorie discrete e continue
Variabili aleatorie discrete e continue
STATISTICA DESCRITTIVA
Intervalli di confidenza
Proprietà degli stimatori
La probabilità.
Fondamenti della Misurazione
Inferenza Statistica Le componenti teoriche dell’Inferenza Statistica sono: la teoria dei campioni la teoria della probabilità la teoria della stima dei.
Analisi dei dati per i disegni ad un fattore
Definizioni Chiamiamo esperimento aleatorio ogni fenomeno del mondo reale alle cui manifestazioni può essere associata una situazione di incertezza. Esempi:
Progetto Pilota 2 Lettura e interpretazione dei risultati
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6
Inferenza statistica per un singolo campione
Valutazione delle ipotesi
La distribuzione normale e normale standardizzata
Introduzione alla statistica per la ricerca Lezione I
Matematica e statistica Versione didascalica: parte 7 Sito web del corso Docente: Prof. Sergio Invernizzi, Università di Trieste.
Appunti di inferenza per farmacisti
Corso di biomatematica lezione 4: La funzione di Gauss
Corso di biomatematica Lezione 2: Probabilità e distribuzioni di probabilità Davide Grandi.
STATISTICA a.a PARAMETRO t DI STUDENT
STATISTICA a.a DISTRIBUZIONE BINOMIALE (cenni)
STATISTICA a.a LA STATISTICA INFERENZIALE
STATISTICA a.a VARIABILITA’ BIOLOGICA E CASO
Misurazione Le osservazioni si esprimono in forma di misurazioni
Popolazione campione Y - variabile casuale y - valori argomentali Frequenza relativa: Estrazione Densità della classe i-esima: Lezione 1.
PROBABILITÀ La probabilità è un giudizio che si assegna ad un evento e che si esprime mediante un numero compreso tra 0 e 1 1 Evento con molta probabilità.
METODI E CONTROLLI STATISTICI DI PROCESSO
STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
Le distribuzioni campionarie
PROBABILITA : se un EVENTO si verifica in h modi diversi su n possibili (POPOLAZIONE) p = h/n Questa definizione è talvolta applicabile a priori (es. lancio.
Unità 2 Distribuzioni di probabilità Misure di localizzazione Misure di variabilità Asimmetria e curtosi.
Errori casuali Si dicono casuali tutti quegli errori che possono avvenire, con la stessa probabilità, sia in difetto che in eccesso. Data questa caratteristica,
STATISTICA INFERENZIALE
STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
Cap. 15 Caso, probabilità e variabili casuali Cioè gli ingredienti matematici per fare buona inferenza statistica.
Obbiettivo L’obiettivo non è più utilizzare il campione per costruire un valore o un intervallo di valori ragionevolmente sostituibili all’ignoto parametro.
è … lo studio delle caratteristiche di regolarità dei fenomeni casuali
Intervalli di fiducia.
Domande riepilogative per l’esame
Strumenti statistici in Excell
Martina Serafini Martina Prandi
“Teoria e metodi della ricerca sociale e organizzativa”
9) VERIFICA DI IPOTESI L’ipotesi statistica è una supposizione riguardante caratteristiche ignote ignote di una v.c. X. Es.: campionamento con ripetizione,
Intervallo di Confidenza Prof. Ing. Carla Raffaelli A.A:
Intervalli di confidenza
Eventi aleatori Un evento è aleatorio (casuale) quando non si può prevedere con certezza se avverrà o meno I fenomeni (eventi) aleatori sono studiati.
La distribuzione campionaria della media
UNIVERSITA’ DEGLI STUDI DI PERUGIA
Elaborazione statistica di dati
Metodologia della ricerca e analisi dei dati in (psico)linguistica 24 Giugno 2015 Statistica inferenziale
TRATTAMENTO STATISTICO DEI DATI ANALITICI
1 Statistica Scienza dell’incertezza PROBABILITÀ ALLA BASE DELL’INFERENZA Ipotesi VERA o FALSA? Campionamento Analisi statistica Scelta di una delle due.
Operazioni di campionamento CAMPIONAMENTO Tutte le operazioni effettuate per ottenere informazioni sul sito /area da monitorare (a parte quelle di analisi)
In alcuni casi gli esiti di un esperimento possono essere considerati numeri naturali in modo naturale. Esempio: lancio di un dado In atri casi si definisce.
1 Statistica descrittiva 2. Sintetizzare i dati con degli indici Come descrivere una variabile in un insieme di osservazioni 1. Utilizzare rappresentazioni.
1 DISTRIBUZIONI DI PROBABILITÁ. 2 distribu- zione che permette di calcolare le probabilità degli eventi possibili A tutte le variabili casuali, discrete.
Distribuzioni limite La distribuzione normale Si consideri una variabile casuale rappresentata mediante una combinazione lineare di altre variabili casuali.
1 TEORIA DELLA PROBABILITÁ. 2 Cenni storici i primi approcci alla teoria della probabilità sono della metà del XVII secolo (Pascal, Fermat, Bernoulli)
A partire da determinate condizioni iniziali, un esperimento e’ l’osservazione del verificarsi di qualche “accadimento” che, se si ripete l’esperimento.
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE SEMPLICE
Scienze tecniche e psicologiche
Psicometria modulo 1 Scienze tecniche e psicologiche Prof. Carlo Fantoni Dipartimento di Scienze della Vita Università di Trieste Implementazione.
Introduzione all’inferenza
Psicometria modulo 1 Scienze tecniche e psicologiche Prof. Carlo Fantoni Dipartimento di Scienze della Vita Università di Trieste Test di ipotesi.
Teoria dei Sistemi di Trasporto Tematica 4: Elementi minimi di teoria della probabilità.
Transcript della presentazione:

Distribuzioni di probabilità Sia X una variabile aleatoria discreta definita su uno spazio campionario S : f (x) = P (‘X=x’ ) P(‘XA’)=

Valore atteso di una variabile aleatoria discreta Esempio: Distribuzione di probabilità del numero di episodi di otite media nei primi 2 anni E(X)=0(.129)+1(.264)+2(.271)+3(.185)+4(.095)+5(.039)+6(.017)=2.038 x 1 2 3 4 5 6 P(‘X=x’) .129 .264 .271 .185 .095 .039 .017

Varianza (della popolazione) di una variabile aleatoria discreta Esempio:

Funzione di distribuzione cumulativa La funzione di distribuzione cumulativa (c.d.f.) di una variabile aleatoria è indicata con F(X ) ed è definita da F(x ) = P(‘X  x’) Esempio F(x) = 0 se x < 0 F(x) = .129 se 0  x < 1 F(x) = .393 se 1  x < 2 F(x) = .664 se 2  x < 3 ………….. …………….

Rappresentazione grafica della c.d.f. Funzione a scalino = step function

Distribuzione di probabilità continua Si riferisce a una variabile aleatoria continua definita su un sottoinsieme S di R: = area sotto il grafico di f di base A

Distribuzione normale: formula indica la media della popolazione  indica la deviazione standard della popolazione

Distribuzione normale: m=3, s=1

La probabilità che cada in un intervallo centrato sulla media di raggio z volte la deviazione standard dipende solo da z, da cui segue la regola empirica. z non è necessariamente un intero. Esempio: la media della altezza di un uomo adulto è 70 inches e s=4.0 inches. In base alla regola, 0.95 è la probabilità che un uomo adulto scelto a caso abbia un altezza compresa fra 62 e 78 inches.

Sia X una v. a. continua normale con media m e deviazione standard s:

Funzione di distribuzione cumulativa 0  F(x)  1; Monotona crescente

Quando trattiamo un campione di dati provenienti da una serie di misure e riteniamo che i dati siano distribuiti secondo una normale, se decidiamo di associare alla nostra stima una incertezza pari a una deviazione standard confidiamo che l’effettivo valore della grandezza misurata giaccia nell’intervallo da noi definito con una probabilità del 68%.

Distribuzione binomiale Si applica a variabili aleatorie che possono assumere solo 2 valori: ad esempio, un certo evento si verifica oppure no. Possono quindi essere codificate con 0 e 1. La distribuzione binomiale descrive il possibile numero di volte che la variabile assume il valore 0 (rispettiv. 1) in una sequenza di osservazioni, sapendo che la probabilità di verificarsi di 0 in una osservazione è p.

Distribuzione binomiale La probabilità di k successi in n prove indipendenti sapendo che la probabilità di successo in 1 prova è p:

Lancio della moneta Ad esempio, lanciando 4 volte una moneta equa sappiamo che P(‘Zero T’)=1/16 P(‘esatt. 1 T’)=4/16 P(‘esatt. 2 T’)=6/16 P(‘esatt. 3 T’)=4/16 P(‘esatt. 4 T’)=1/16 Se la moneta non è equa ma T ha probabilità p: P(‘k T su n prove’)=

Distribuzione binomiale: grafico

Esempio Nell’emocromo si misura anche il numero di globuli bianchi. Questi si dividono in 5 categorie: neutrofili, linfociti, monociti e basofili. Interessa la distribuzione di neutrofili k su 100 globuli bianchi. Qual è la probabilità che su 5 cellule 2 siano neutrofili sapendo che la probabilità che 1 cellula sia un neutrofilo è 0.6?

Ricordiamo che In quanto ad ogni sottoinsieme di k oggetti è associato il suo complementare che ha n-k oggetti. Qui i sottoinsiemi di k oggetti sono tanti quanti quelli di n-k oggetti.

Esempio dei neutrofili

sampling distribution Quando una statistica eseguita su una campione stima un parametro della popolazione, la stima dipende dal campione e ci si pone la domanda quanto la stima è prossima al valore del parametro della popolazione. Così la media campionaria, una proporzione campionaria sono variabili aleatorie e possiedono una distribuzione: sampling distribution

la proporzione di individui che votano per la lista A la percentuale di donne facenti parte di una giuria il numero medio di carcerati già condannati ad una pena detentiva su un campione di 100 detenuti del carcere XY

Distribuzione campionaria di medie campionarie La media è una variabile che cambia da campione a campione. La media della distribuzione campionaria è uguale a m, cioè, misurandola su campioni di dimensione n al tendere del numero dei campioni all’infinito la media delle medie campionarie tende alla media della popolazione m.

Errore di campionamento Errore standard La deviazione standard della distribuzione campionaria di si chiama errore standard. Vale la formula: Errore di campionamento m -

Teorema centrale del limite La distribuzione campionaria di un campione random tende ad una distribuzione normale al tendere della dimensione del campione all’infinito.

Osservazioni: La approssimata normalità della distribuzione campionaria delle medie si applica indipendente dal tipo della distribuzione della popolazione!!!