Gaetano Continillo Dipartimento di Ingegneria, Università del Sannio Piazza Roma, 82100, Benevento <continillo@unisannio.it>
Sommario Modelli a parametri distribuiti di sistemi reagenti Sistemi di combustione: comportamento transitorio Sistemi di combustione: regimi dinamici Dinamica di sistemi reazione-diffusione Dinamica di sistemi reazione-diffusione-convezione
Sommario Modelli a parametri distribuiti di sistemi reagenti Sistemi di combustione: comportamento transitorio Sistemi di combustione: regimi dinamici Dinamica di sistemi reazione-diffusione Dinamica di sistemi reazione-diffusione-convezione
Modelli Vi sono modelli cosiddetti a parametri distribuiti, in cui le variabili di stato sono funzione della posizione e del tempo, e modelli cosiddetti a parametri concentrati, in cui le variabili possono essere funzioni soltanto del tempo o di una variabile evolutiva (time-like). I modelli a parametri concentrati sono scritti a partire da assunzioni sulla uniformità spaziale delle variabili di stato. I modelli a parametri distribuiti invece considerano la distribuzione delle variabili di stato lungo una o più coordinate spaziali.
Modelli a parametri distribuiti di reattori ideali: il reattore con flusso a pistone (Plug Flow Reactor, PFR) Un PFR è un reattore continuo e può essere schematicamente rappresentato come segue: Questo modello di reattore ideale è caratterizzato dal fatto che il moto dei fluidi è ordinato in modo che nessun elemento di fluido si mescola o si sovrappone con un elemento di fluido che sta avanti o indietro. Si ipotizza pertanto completa miscelazione solo nelle direzioni ortogonali al moto ma non in quella del moto stesso. Da queste considerazioni scaturisce l’osservazione che in un reattore con flusso a pistone (PFR) tutti gli elementi di fluido hanno la stessa velocità e quindi lo stesso tempo di permanenza. Inoltre, le grandezze dipendono da una sola coordinata spaziale oltre che dal tempo.
Modelli a parametri distribuiti di reattori ideali: Plug Flow Reactor, PFR Indicando con z la distanza dall’imbocco del reattore, si vuole determinare C(z,t) e T(z,t). Il sistema di riferimento per cui scriveremo il bilancio sarà un intervallo differenziale di z, mentre il tempo di osservazione sarà un intervallo differenziale di t. Si illustra qui la costruzione del bilancio di materia. Detta Q la portata volumetrica in alimentazione al sistema, allora QC(z,t)dt rappresenta la quantità della specie che si sta bilanciando (in moli) entrante nel sistema attraverso la sezione di ingresso nell’intervallo di tempo dt, per effetto del moto complessivo del fluido attraverso il reattore (termine convettivo). z z+dz
Modelli a parametri distribuiti di reattori ideali: Plug Flow Reactor, PFR Queste moli in parte reagiscono (e quindi scompaiono) ed in parte escono dal sistema. Le moli uscenti per convezione sono pari a QC(z+dz,t)dt. Le moli che scompaiono per reazione nell’intervallo di tempo considerato sono pari a , dove è la velocità di produzione della specie chimica (dimensionale, moli per unità di volume e di tempo) ed è il volume del sistema considerato.
Modelli a parametri distribuiti di reattori ideali: Plug Flow Reactor, PFR Il flusso di materia, anche se il fluido fosse fermo, non sarebbe nullo, per effetto della diffusione molecolare (legge di Fick). Il flusso diffusivo, per unità di superficie e di tempo, è proporzionale al gradiente di concentrazione. Detto D il coefficiente di diffusione, i contributi entrante ed uscente in corrispondenza dell’ascissa z e z+dz nel tempo dt sono pari, rispettivamente, a e . In transitorio, al netto di tali flussi e del consumo dovuto alla reazione, l’accumulo della specie C è costituito dal termine dC(z,t)Sdz .
moli entranti per convez. Modelli a parametri distribuiti di reattori ideali: Plug Flow Reactor, PFR Raccogliendo i termini del bilancio, si scrive: moli entranti per convez. moli entranti per diffus. moli uscenti per convez. moli consumate per reazione moli accumulate Si espandono quindi in serie di Taylor e arrestandosi ai termini del primo ordine.
associata alle condizioni al contorno, ad esempio: Modelli a parametri distribuiti di reattori ideali: Plug Flow Reactor, PFR Dividendo ambo i membri per dz e dt, con qualche manipolazione si ottiene la forma differenziale del bilancio: associata alle condizioni al contorno, ad esempio: ed iniziali:
Modello di PFR in transitorio, forma adimensionale Per passare alla formulazione adimensionale del modello, prendiamo un tempo caratteristico tc, una lunghezza caratteristica zc ed una concentrazione caratteristica Cc , per esempio C0. Definiamo quindi le seguenti grandezze adimensionali:
Modello di PFR in transitorio, forma adimensionale Operando le conseguenti sostituzioni e qualche manipolazione algebrica, si perviene a:
Scegliendo quale tempo di riferimento il tempo di residenza: Modello di PFR in transitorio, forma adimensionale Scegliendo quale tempo di riferimento il tempo di residenza: (in modo che ) e quale lunghezza di riferimento (in modo che ) e ricordando la definizione del numero di Peclet: , si ha:
Modello di PFR in transitorio, forma adimensionale Questo rappresenta il modello adimensionale di un PFR isotermo in transitorio in cui avviene una sola reazione chimica di consumo del reagente.
Modello di PFR in transitorio, forma adimensionale Spesso si fa l’ipotesi di Pe>>1. In questo caso i contributi convettivi prevalgono su quelli diffusivi/dispersivi ed il modello degenera nella forma seguente: Questo modello, anche per r(x) non lineare, non presenta comportamenti dinamici emozionanti. Esso si riduce facilmente ad una equazione differenziale ordinaria nella variabile , per la quale si verifica l’analogia con il modello del reattore batch.
Sommario Modelli a parametri distribuiti di sistemi reagenti Sistemi di combustione: comportamento transitorio Sistemi di combustione: regimi dinamici Dinamica di sistemi reazione-diffusione Dinamica di sistemi reazione-diffusione-convezione Dinamica di combustione con fenomeni acustici
Esempi: dinamica del transitorio Da sole o insieme con gli esperimenti, le simulazioni numeriche possono servire ad indagare sui meccanismi che controllano I fenomeni dinamici fisici e chimici. I vantaggi peculiari dei modelli numerici sono: il grado di dettaglio pressoché infinito la possibilità di aggiungere od eliminare artificialmente parti del modello
Simulazioni dinamiche transitorie dettagliate http://www.mne.psu.edu/yang/projects/Combustion Dynamics in Lean-Premixed Swirl-Stabilized Combustors/
Sistemi a parametri distribuiti: dinamica di transitorio Con specifico riferimento alla seconda caratteristica, si illustrano: uno studio del ruolo dell’attrito in parete nella propagazione di “tulip flames” uno studio sul meccanismo di estinzione di fiamme laminari in letti impaccati
Dinamica del transitorio – tulip flame A sinistra: esperimento di Ellis (1928) A destra: simulazione numerica, Marra & Continillo (1996) Il meccanismo di propagazione di fiamme che evolvono in forma di fiore non è ancora completamente compreso.
Effetto del cambiamento delle condizioni al contorno: Dinamica del transitorio – tulip flame Equazioni del modello: Navier-Stokes per flussi reagenti, formulazione per bassi numeri di Mach Effetto del cambiamento delle condizioni al contorno: non-slip vs free-slip Simulazioni effettuate sostituendo la condizione (fisica) di non-slip in parete con una condizione (non fisica) free-slip non conducono alla formazione di fiamme a cuspide. Ciò dimostra che gli effetti viscosi giocano un ruolo nel fenomeno della tulip flame, contrariamente a quanto si riteneva prima.
Dinamica del transitorio – tulip flame free-slip non-slip
Dinamica del transitorio – estinzione di fiamme in letti impaccati La deformazione della fiamma per effetto del percorso tortuoso nel letto ed il contatto ravvicinato con la superficie delle sfere del letto sono due possibili cause dell’estinzione di fiamma in letti impaccati.
Dinamica del transitorio – estinzione di fiamme in letti impaccati Configurazioni sperimentali
Dinamica del transitorio – estinzione di fiamme in letti impaccati Risultato sperimentale: le proprietà termiche del letto hanno influenza trascurabile sui limiti di estinzione in termini di composizione della miscela incombusta. Possiamo concludere che lo scambio termico NON è il meccanismo dominante? Flame strain vs. wall heat transfer
Dinamica del transitorio – estinzione di fiamme in letti impaccati Modello 1-D e modelli multi-D Il modello 1-D può incorporare (per correlazione) lo scambio termico con il solido potrebbe incorporare (per correlazione) effetti di deformazione della fiamma non può risolvere la struttura della fiamma in termini di deformazione e stiramento della fiamma stessa
Dinamica del transitorio – estinzione di fiamme in letti impaccati Equazioni del modello 2-D
Dinamica del transitorio – estinzione di fiamme in letti impaccati Analisi con il modello 2D: Esempio di simulazione del modello “fisico”
Dinamica del transitorio – estinzione di fiamme in letti impaccati
Sommario Modelli a parametri distribuiti di sistemi reagenti Sistemi di combustione: comportamento transitorio Sistemi di combustione: regimi dinamici Dinamica di sistemi reazione-diffusione Dinamica di sistemi reazione-diffusione-convezione
Regimi dinamici: sistemi reazione-diffusione-convezione Gli esempi che seguono sono relativi alla ignizione spontanea ed alla combustione di combustibili solidi. Il primo esempio riguarda un modello 1D della propagazione di onde di reazione esotermiche solido-solido (gasless combustion). Altri esempi sono sistemi reazione-diffusione gas-solido 1D e 2D e un sistema reazione-diffusione-convezione 2D. La dinamica è studiata principalmente mediante simulazione numerica, ma il modello gas-solido 1D è studiato anche per continuazione parametrica, che porta ad identificare una cascata di biforcazioni di period-doubling che conduce al caos. Il sistema reazione-diffusione-convezione riguarda sempre un ammasso di combustibile solido con un modello bidimensionale. La convezione è qui modellata in modo semplice con la legge di Darcy’s (moto di filtrazione).
Sistemi reazione-diffusione: gasless combustion Reazioni non catalitiche solido-solido accompagnate da intenso sviluppo di calore vengono spesso denominate gasless combustion. Tali reazioni sono impiegate in processi per la produzione di materiali solidi con caratteristiche meccaniche speciali. Esse si verificano talvolta anche come processi indesiderati, quali ad esempio la decomposizione spontanea in letti di fertilizzanti azotati. In questi processi la reazione esotermica, una volta iniziata in una regione del solido, può autosostenersi propagando un fronte di reazione nel reagente solido, in cui l’unico meccanismo di trasporto è la conduzione di calore. Si osservano vari regimi, che vanno dalla reazione pressoché simultanea dell’intero sistema alla propagazione di un fronte di reazione stazionaria o pulsante più o meno regolarmente, all’estinzione (quando il sistema non è in grado di autosostenere la reazione).
Sistemi reazione-diffusione: gasless combustion Gli studi analitici fanno uso di approssimazioni asintotiche (quali ad esempio il limite di energia di attivazione infinita) per raggiungere soluzioni in forma chiusa. Gli studi numerici riproducono gli esperimenti ma non consentono di trarre conclusioni di validità generale. Le equazioni del modello nella forma più semplice possibile sono, per una cinetica di tipo Arrhenius, in forma adimensionale: con le opportune condizioni al contorno ed iniziali.
Sistemi reazione-diffusione: gasless combustion Gasless combustion: profili spaziali di temperatura ad intervalli di tempo equispaziati per un caso di propagazione di fiamma pulsante, ottenuta per simulazione numerica.
Sistemi reazione-diffusione: gasless combustion Carotenuto et al., 1995, dimostrarono l’esistenza di onde di propagazione per tutti i sistemi 1D aventi velocità di reazione non nulla ovunque nel dominio eccetto che al contorno. Per tali sistemi essi hanno anche determinato i limiti per la velocità di propagazione, dimostrando che il limite inferiore è sempre non nullo. I vari possibili modi di propagazione del fronte di reazione, riprodotti per simulazione numerica, mostrano vari regimi tempo-asintotici al variare dei parametri fisici e chimici e delle condizioni operative. Per questi sistemi, le simulazioni debbono essere condotte con una fitta griglia di discretizzazione spaziale (600 o più nodi) a causa della presenza di scale molto diverse tra loro (problema “stiff”).
Sistemi reazione-diffusione: gasless combustion Gasless combustion: serie temporali della velocità di propagazione del fronte di reazione per quattro diversi valori del parametro di biforcazione : a) velocità costante; b) oscillazione di periodo 1; c) oscillazione di periodo 2; d) caos. Napoli, 3 aprile 2008 Università Federico II, Scuola di Dottorato in Ingegneria industriale Aula Ferretti, Istituto Motori, CNR
Sistemi reazione-diffusione: gasless combustion Gasless combustion: diagramma di biforcazione nel piano (, ). La linea tratteggiata con i rombi separa la regione di propagazione con velocità costante da quella a velocità pulsante. Nel diagramma sono anche riportate due linee a velocità costante (c=0.150 e c=0.200). Per ragioni di carattere fisico, non può essere minore di .
Regimi dinamici: sistemi reazione-diffusione-convezione I prossimi esempi sono relativi alla ignizione spontanea ed alla combustione di un mucchio di carbone. I primi due sono modelli 1D e 2D basati su equazioni reazione-diffusione. La simulazione numerica è lo strumento principale impiegato, ma il modello 1D è stato anche studiato mediante continuazione parametrica, ed è stata identificata una via al caos per cascata armonica (sequenza di biforcazioni di period-doubling). Il terzo esempio è un modello reazione-diffusione-convezione. La convezione è modellata con la legge di Darcy.
Regimi dinamici: sistemi reazione-diffusione La auto-ignizione di un ammasso di combustibile solido è un fenomeno complesso. Se l’aria è presente negli interstizi, l’ossigeno può ossidare in superficie il combustibile. Se l’energia termica sviluppata dalla reazione di combustione, inizialmente lenta, non viene smaltita in misura sufficiente verso il contorno libero, la temperatura può aumentare localmente fino a determinare ossidazione veloce e quindi combustione. La combustione determina gradienti di temperatura e, quindi, di densità del gas, creando così le condizioni per un significativo moto convettivo. Questo influenza anche la reazione chimica, variando sia la distribuzione di ossigeno che il campo di temperatura.
Regimi dinamici: sistemi reazione-diffusione Il comportamento dinamico di questi sistemi è ricco e complesso, anche se modellati soltanto con reazione e diffusione attraverso uno strato di combustibile solido (modello 1D). Oltre alla geometria 1D e l’assenza di moto, per scrivere il modello si fanno le seguenti ipotesi: il consumo del solido è trascurabile nel tempo di osservazione; la reazione è del primo ordine, one-step, con costante cinetica dipendente dalla temperatura con legge di Arrhenius; gas e solido sono all’equilibrio termico locale, il che consente di scrivere una sola equazione di bilancio di energia per entrambe le fasi.
Regimi dinamici: sistemi reazione-diffusione Le equazioni, in forma adimensionale, sono: associate alle seguenti condizioni al contorno: ed iniziali:
Regimi dinamici: sistemi reazione-diffusione Nel modello, Le è il rapporto fra diffusività di materia ed energia, il calore di reazione adimensionale, il modulo di Thiele, l’energia di attivazione adimensionale ed xw la larghezza adimensionale del dominio spaziale. Le oscillazioni sono dovute ai diversi tempi caratteristici fra diffusione di materia (lenta) e diffusione di energia (veloce) in presenza di una reazione fortemente esotermica con alta energia di attivazione (lenta a bassa temperatura, improvvisamente veloce oltre una temperatura di soglia). Da una condizione di letto vuoto, si osserva la diffusione lenta di reagente verso l’interno, con reazione dapprima molto lenta accompagnata da un aumento lento della temperatura, poi improvvisamente rapida con riscaldamento rapido ed esaurimento del reagente. Segue una fase di raffreddamento in assenza di reagente, e via daccapo con la diffusione del reagente verso l’interno.
Regimi dinamici: sistemi reazione-diffusione Le equazioni alle derivate parziali del modello sono ridotte ad un sistema di equazioni differenziali ordinarie attraverso: metodi alle differenze finite, per le simulazioni; metodi di collocazione ortogonale, per lo studio delle biforcazioni.
Sistemi reazione-diffusione: sistema 1D (100 variabili di stato)
Sistemi reazione-diffusione: sistema 1D, diagramma delle fasi Napoli, 3 aprile 2008 Università Federico II, Scuola di Dottorato in Ingegneria industriale Aula Ferretti, Istituto Motori, CNR
Sistemi reazione-diffusione: sistema 1D, via al caos Reazione-diffusione: diagramma delle fasi per quattro diversi valori del parametro di biforcazione : a) oscillazione di periodo 1; b) oscillazione di periodo 2; c) oscillazione di periodo 8; d) caos.
Sistemi reazione-diffusione: sistema 1D, diagramma di soluzioni Diagramma di soluzioni determinato per continuazione, parametro di biforcazione . Le linee rappresentano soluzioni stazionarie statiche (continue: stabili, tratteggiate: instabili); i cerchi rappresentano soluzioni periodiche (pieni: stabili, vuoti: instabili). I rombi pieni rappresentano soluzioni periodiche stabili ottenute per simulazione numerica.
Sistemi reazione-diffusione: modello a parametri concentrati E’ interessante esaminare un sistema ottenuto concentrando i parametri Y e T e modellando lo scambio di materia e di calore con l’esterno con due termini lineari moltiplicati per due coefficienti di scambio globali:
Sistemi reazione-diffusione: modello a parametri concentrati Questo sistema ha soltanto due variabili di stato (sistema piano), pertanto non può avere biforcazioni di raddoppio del periodo nè, tanto meno, com-portamento caotico. Tuttavia, si osserva come la forma del ciclo limite sia molto simile a quella del modello a parametri distribuiti, ed inoltre anche in questo caso l’ampiezza del ciclo limite aumenta con il parametro . Reazione-diffusione: modello a parametri concentrati, diagramma delle fasi per due diversi valori del parametro di biforcazione, 1 < 2.
Reazione-diffusione e reazione-diffusione-convezione: sistema 2D (884 variabili di stato) Per il sistema 2D, il dominio computazionale corrisponde and una semisezione trasversale di uno strato rettangolare allungato. Il reagente diffonde nel sistema attraverso i confini superiore e laterale, mentre il calore viene scambiato con l’esterno attraverso tutto il contorno. Napoli, 3 aprile 2008 Università Federico II, Scuola di Dottorato in Ingegneria industriale Aula Ferretti, Istituto Motori, CNR
Sistemi reazione-diffusione: sistema 2D (884 variabili di stato) Le equazioni, per il caso reazione-diffusione, sono: munite delle opportune condizioni al contorno ed iniziali.
Sistemi reazione-diffusione: sistema 2D (884 variabili di stato)
Sistemi reazione-diffusione-convezione Sistema oscillante reazione-diffusione-convezione: