Istituto di Istruzione Secondaria Superiore “ G.G. Adria”

Slides:



Advertisements
Presentazioni simili
Calcolo letterale I POLINOMI
Advertisements

4x-5y I POLINOMI xyz (a+b).
SCOMPOSIZIONE IN FATTORI PRIMI
Mat_Insieme Lavoro di Gruppo a tre mani Prodotti Notevoli
Cos’è la fattorizzazione
Mat_Insieme Lavoro di Gruppo Prodotti Notevoli
comunque si considerino sono sicuramente
realizzazione di Angelo Caporizzo
L’algebra e la scomposizione
Prodotti notevoli Definizione
LE MATRICI.
POTENZE cosa sono proprietà curiosità visualizzazione.
MONOMI E POLINOMI Concetto di monomio Addizione di monomi
esponente del radicando
2ab2 2b4 4x − 2y a 3b2y3 3b2y3b Definizione e caratteristiche
Difficoltà tipiche dell’Algebra
Come si calcola una potenza n di un binomio?
IL QUADRATO DI UN TRINOMIO
(pane quotidiano dell’algebra, dannazione… degli studenti)
DefinizioneUn polinomio si dice…. Operazioni con i polinomi Prodotti notevoli Regola di RuffiniTeorema del resto di Ruffini fine Mammana Achille Patrizio.
FATTORIZZAZIONE di un polinomio
PROBLEMA Sara ha bisogno di sapere da Andrea quali sono i capitoli di Filosofia da ripassare per il giorno dopo. Andrea le risponde con il seguente messaggio:”I.
(A+B+C)2=A2+B2+C2+2AB+2AC+2BC
Progetto DigiScuola Corso di formazione Gruppo Matematica Autori:
Polinomi … che rompicapo scomporli!!!
SCOMPOSIZIONE DI UN POLINOMIO IN FATTORI
comunque si considerino sono sicuramente
APPUNTI DI MATEMATICA schema degli appunti
SCOMPOSIZIONE DI POLINOMI
CALCOLO LETTERALE Concetto di monomio Addizione di monomi
SCOMPOSIZIONI.
Ti spiego il perché e anche che…
LA SOMMA DI DUE MONOMI PER LA LORO DIFFERENZA
Potenze Definizioni e Proprietà
I prodotti notevoli Quadrato di di binomio trinomio Quadrato di
LA SCOMPOSIZIONE DI POLINOMI IN FATTORI
SCOMPOSIZIONE IN FATTORI PRIMI di un polinomio
IL CALCOLO COMBINATORIO
Operazioni con i polinomi
Il triangolo di Tartaglia
I monomi.
Polinomi Definizioni Operazioni Espressioni Esercizi
Somma fra frazioni algebriche
I prodotti notevoli Prof.ssa Fava M.A.
I Prodotti Notevoli.
Sei pronto a “magnarteli”?
Scomposizione polinomi
I POLINOMI E LE LORO OPERAZIONI
I polinomi.
LE PROGRESSIONI.
POTENZE cosa sono proprietà curiosità visualizzazione.
LE PROPRIETA' DELLE PROPORZIONI Prodotto da Prof.ssa Maria Raschello
Mi viene voglia di scappare!
CALCOLO LETTERALE Perché?
CALCOLO LETTERALE I PRODOTTI NOTEVOLI
Minimo comune multiplo
Linguaggio extraterreste ……con numeri e lettere
MONOMI E POLINOMI.
LE POTENZE an = a x a x a ... x a n volte ( a, n N)
a cura dei prof. Roberto Orsaria e Monica Secco
Calcolo letterale.
La Moltiplicazione fra monomi
Antonio Pio Urzino 1 A A.S. 2009/10
alunni della classe 2 a C dell’I.T.I.S.“VERONA TRENTO” di Messina, ci raccontano cosa sono, come si calcolano e come si dimostrano i………
Prodotti notevoli.
I.P.S.I.A.M. -- I.T.Nautico Trasporti e Logistica -- IPSIA “A. Banti” ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE “A.VESPUCCI” Cod. Mecc. BAIS
Le espressioni algebriche letterali
PPPP rrrr oooo dddd oooo tttt tttt iiii N N N N oooo tttt eeee vvvv oooo llll iiii TTTT aaaa bbbb eeee llll llll aaaa d d d d iiii S S S S cccc oooo mmmm.
Calcolo letterale I POLINOMI
Transcript della presentazione:

Istituto di Istruzione Secondaria Superiore “ G.G. Adria” Lavoro di gruppo Prodotti notevoli Prof.ssa Erminia Conti Prof.ssa Caterina Piccione Prof.ssa Dora Giacalone prof.sse: Conti - Piccione - Giacalone

prof.sse: Conti - Piccione - Giacalone I Prodotti Notevoli Quadrato di binomio Cubo di binomio Quadrato di polinomio Potenza n-esima di binomio Somma per differenza Altri prodotti notevoli prof.sse: Conti - Piccione - Giacalone

prof.sse: Conti - Piccione - Giacalone Quadrato di un Binomio Cerchiamo la regola La regola Il significato geometrico Esempi Esercizi proposti prof.sse: Conti - Piccione - Giacalone

Quadrato di binomio: significato algebrico (a+b)2 = (a+b) (a+b) = = a2+ab+ab+b2 = = a2+2ab+b2 prof.sse: Conti - Piccione - Giacalone

Quadrato di binomio: la regola ( a + b ) 2 = a 2 + 2ab + b 2 Il quadrato di un binomio è un trinomio avente per termini: il quadrato del 1° monomio il doppio prodotto del 1° monomio per il 2° il quadrato del 2° monomio prof.sse: Conti - Piccione - Giacalone

Quadrato di binomio: significato geometrico (a + b) (a + b)2 a2 b2 ab (a + b)2 = a2 + 2 ab + b2 prof.sse: Conti - Piccione - Giacalone

Quadrato di binomio: esempi (2a+b)2 = (2a)2+2(2a)(+b)+(+b)2 = 4a2 + 4ab + b2 (2a - b)2 = (2a)2+2(2a)(-b)+(-b)2 = 4a2 - 4ab + b2 (3a+2b)2 = (3a)2 +2(3a)(+2b) +(+2b)2 = 9a2 +12ab +4b2 (3a -2b)2 = (3a)2 +2(3a)(-2b) +(-2b)2 = 9a2 - 12ab +4b2 (-3a -2b)2 = (-3a)2 +2(-3a)(-2b)+(-2b)2 = 9a2 +12ab +4b2 (-3a+2b)2 = (-3a)2 +2(-3a)(+2b)+(+2b)2 = 9a2 -12ab+4b2 prof.sse: Conti - Piccione - Giacalone

Quadrato di binomio: esercizi (2a - 3b)2 = (-2a – 3b)2 = (x2 + 3y)2 = (5x – 3y)2 = (5a2 + 2b2)2 = (-3x3 – 2y2)2 = (2xy – 3y)2 = (7ab – 2a)2 = 9a2 + 30 a + 25 4a2 - 12 ab + 9b2 4a2 + 12 ab + 9b2 x4 + 6 x2y + 9y2 25x2 – 30xy + 9y2 25a4 + 20 a2b2 + 4b4 9x6 + 12 x3y2 + 4y4 4x2y2 - 12 xy2 + 9y2 49a2b2 - 28 a2b + 4a2 prof.sse: Conti - Piccione - Giacalone

Quadrato di binomio: esercizi prof.sse: Conti - Piccione - Giacalone

prof.sse: Conti - Piccione - Giacalone Cubo di un Binomio Cerchiamo la regola La regola Il significato geometrico Esempi Esercizi proposti prof.sse: Conti - Piccione - Giacalone

Cubo di binomio: significato algebrico (a+b)3 = (a+b)2 (a+b) = = (a2+2ab+b2) (a+b) = = a3+a2b+2 a2b+2ab2+ab2+b3= = a3 + 3a2b + 3ab2 + b3 prof.sse: Conti - Piccione - Giacalone

Cubo di binomio: la regola ( a + b ) 3 = a 3 + 3a2b + 3ab2 + b 3 Il cubo di un binomio è un quadrinomio avente per termini: il cubo del 1° monomio il triplo prodotto del quadrato del 1° per il 2° il triplo prodotto del 1° per il quadrato del 2° il cubo del 2° monomio prof.sse: Conti - Piccione - Giacalone

Cubo di binomio: significato geometrico (a + b)3 = a3 + 3a2b + 3ab2 + b3 prof.sse: Conti - Piccione - Giacalone

Cubo di binomio: esempi (2a+b)3 = (2a)3 +3(2a)2(+b) +3(2a)(+b)2 +(+b)3 = = 8a3 + 12a2b + 6ab2 + b3 (2a - b)3 = (2a)3+3(2a)2(-b)+3(2a)(-b)2 +(-b)3 = = 8a3 - 12a2b + 6ab2 - b3 (-3a -2b)3 = (-3a)3 +3(-3a)2 (-2b)+3(-3a)(-2b)2 +(-2b)3 = = -27a3 - 54a2 b - 36ab2 - b3 (-3a +2b)3 = (-3a)3 +3(-3a)2 (+2b)+3(-3a)(+2b)2 +(+2b)3 = -27a3 + 54a2 b - 36ab2 + b3 prof.sse: Conti - Piccione - Giacalone

Cubo di binomio: esercizi (2a + 1)3 = (3a - b)3 = (-2x - 3y)3 = (a2 + 3b)3 = (a - 3b)3 = (a2 + 2b2)3 = (3a3 - 2b2)3 = (2ab - 3b)3 = 8a3+12a2+6a+1 27a3-27a2b+6ab2-b3 -8x3-36x2y-54xy2-27y3 a6+9a4 b+27a2b2+27b3 8a3-36a2 b+54ab2 -27b3 a6+6a4 b2+12a2b4+8b6 27a9-54a6b2+36a3b4-8b6 8a2b2-36a2 b3+54ab3-27b3 prof.sse: Conti - Piccione - Giacalone

Cubo di binomio: esercizi prof.sse: Conti - Piccione - Giacalone

Quadrato di un Polinomio Cerchiamo la regola La regola Il significato geometrico Esempi Esercizi proposti prof.sse: Conti - Piccione - Giacalone

Quadrato di polinomio: significato algebrico (a+b+c)2 = (a+b+c) (a+b+c) = = a2+ab+ac+ab+b2+bc+ac+bc+c2 = = a2 + b2 + c2 +2ab + 2ac + 2bc prof.sse: Conti - Piccione - Giacalone

Quadrato di polinomio: la regola (a+b+c)2 = a2+b2+c2+2ab+2ac+2bc Il quadrato di un polinomio di un numero qualsiasi di termini è un polinomio avente per termini: il quadrato di tutti i termini il doppio prodotto (con il relativo segno) di ciascun termine per tutti quelli che lo seguono prof.sse: Conti - Piccione - Giacalone

Quadrato di polinomio: significato geometrico (a+b+c) (a+b+c)2 a b c a2 b2 ab c2 ac bc (a+b+c)2 = a2+b2+c2+2ab+2ac+2bc prof.sse: Conti - Piccione - Giacalone

Quadrato di polinomio: esempi (2a + b + 3c)2 = =(2a)2+(+b)2+(+3c)2+2(2a)(+b)+2(2a)(+3c)+2(+b)(+3c) = 4a2 + b2 + 9c2 + 4ab + 12ac + 12bc (2a - b - c)2 = = (2a)2+(-b)2+(-c)2+2(2a)(-b)+2(2a)(-c)+2(-b)(-c)= = 4a2 + b2 + c2 - 4ab - 4ac + 2bc (-3a - 2b + c )2 = =(-3a)2+(-2b)2+(+c)2+2(-3a)(-2b)+2(-3a)(+c)+2(-2b)(+c) = 9a2 + 4b2 + c2 + 12ab - 6ac - 4bc prof.sse: Conti - Piccione - Giacalone

Quadrato di polinomio: esercizi (2a + 2b + 7)2 = (3a - 4b - 2c)2 = (-2x - 3y + 1)2 = (a2 + 3b - c)2 = (5a + 2b + c)2 = (-3a3+2b2+1)2 = (2ab - 3b - 2)2 = (7xy - 2x - 1)2 = 4a2+4b2+49+8ab+24a+24b 9a2+16b2+4c2-24ab-12ac+16bc 4x2+9y2+1+12 xy - 4x - 6y a4+9b2+c2 + 6a2b - 2a2c - 6bc 25a2+4b2+c2 +20ab+10ac+4bc 9a6 +4b4+1 - 12a3b2- 6a3+4b2 4a2b2 +9b2+4-12ab2-8ab+12b 49x2y2+4x2+1- 28 x2y -14xy+4x prof.sse: Conti - Piccione - Giacalone

Potenza n-esima di Binomio Cerchiamo la regola Triangolo di Tartaglia La regola Esempi Esercizi proposti prof.sse: Conti - Piccione - Giacalone

Potenza n-esima di binomio: cerchiamo una regola (a+b)0 = 1 (a+b)1 = a+b (a+b)2 = a2+2ab+b2 (a+b)3 = a3+3a2b+3ab2+b3 (a+b)4 = a4+4a3b+6a2b2+4ab3+b4 (a+b)5 = a5+5a4b+10a3b2+10a2b3+5ab4+b5 (a+b)6 = a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6 lo sviluppo di (a+b)n contiene sempre n+1 termini i coefficienti dei termini estremi e di quelli equidistanti dagli estremi sono uguali in ogni termine dello sviluppo gli esponenti della lettera a decrescono da an ad a0=1 e gli esponenti della lettera b crescono da b0=1 a bn i coefficienti possono essere disposti secondo uno schema detto “ Triangolo di Tartaglia” prof.sse: Conti - Piccione - Giacalone

Potenza n-esima di binomio: Triangolo di Tartaglia (a+b)0 = 1 (a+b)1 = 1 1 (a+b)2 = 1 2 1 (a+b)3 = 1 3 3 1 (a+b)4 = 1 4 6 4 1 (a+b)5 = 1 5 10 10 5 1 (a+b)6 = 1 6 15 20 15 6 1 In questo prospetto: ogni riga inizia e termina con 1 ogni altro numero si ottiene sommando quelli sovrastanti della riga precedente prof.sse: Conti - Piccione - Giacalone

Potenza n-esima di binomio: la regola (a+b)n = an+nan-1b + ……. + nabn-1+bn La potenza n-esima di un binomio è un polinomio omogeneo di grado n, ordinato e completo secondo le potenze decrescenti di a e crescenti di b, i cui coefficienti si ottengono dal Triangolo di Tartaglia. In pratica, si procede nel seguente modo: si scrive la parte letterale di ogni monomio tenendo conto che è di grado n e le potenze di a decrescono (da n fino a 0) e di b crescono(da 0 ad n) si calcolano i coefficienti di ogni monomio con il Triangolo di Tartaglia prof.sse: Conti - Piccione - Giacalone

Potenza n-esima di binomio: esempi (a + b)4 = (a)4+4(a)3(+b)+6(a)2(+b)2+4(a)(+b)3+(+b)4 = = a4 + 4a3b + 6a2b2 + 4ab3 + b4 (a - b)4 = (a)4+4(a)3(-b)+6(a)2(-b)2+4(a)(-b)3+(-b)4 = = a4 - 4a3b + 6a2b2 - 4ab3 + b4 (2a+b)5 = =(2a)5+5(2a)4(b)+10(2a)3(b)2+10(2a)2(b)3 +5(2a)(b)4+(b)5 =32a5+5(16a4)(b)+10(8a3)(b2) +10(4a2)(b3) +5(2a)(b4)+b5 =32a5 + 80a4b + 80a3b2 + 40a2b3 + 10ab4 + b5 (3a-2b)4 = =(3a)4 +4(3a)3(-2b)+6(3a)2(-2b)2+4(3a)(-2b)3+(-2b)4 = =81a4 +4(27a3)(-2b)+6(9a2 )(+4b2)+4(3a)(-8b3)+16b4= = 81a4 - 216a3b + 216a2b2 - 96ab3 + 16b4 prof.sse: Conti - Piccione - Giacalone

Potenza n-esima di binomio: esercizi (2a - b)4 = (a +b)7 = (a - b)7 = (a - b)6 = (a +2b)4 = (a - 2b)4 = (a +2b)5 = (-x - y)5 = 16a4 - 32a3b + 24a2b2 - 8ab3 + b4 a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7 a7-7a6b+21a5b2-35a4b3+35a3b4-21a2b5+7ab6-b7 a6- 6a5b +15a4b2 - 20a3b3+15a2b4 - 6ab5+ b6 a4 + 8a3b + 24a2b2 + 32ab3 + 16b4 a4 - 8a3b + 24a2b2 - 32ab3 + 16b4 a5 +10a4b + 40a3b2+ 80a2b3 +80ab4+32b5 - x5 - 5x4 y - 10x3y2 - 10x2y3 - 5xy4 - y5 prof.sse: Conti - Piccione - Giacalone

prof.sse: Conti - Piccione - Giacalone Somma per differenza Cerchiamo la regola La regola Esempi Esercizi proposti prof.sse: Conti - Piccione - Giacalone

Somma per differenza: significato algebrico (a+b) (a-b) = = a2 - ab + ab - b2 = = a2 - b2 prof.sse: Conti - Piccione - Giacalone

Somma per differenza: la regola ( a + b ) ( a - b ) = a 2 - b 2 Il prodotto della somma di due termini per la loro differenza è uguale al quadrato del primo termine meno il quadrato del secondo termine prof.sse: Conti - Piccione - Giacalone

Somma per differenza: esempi (2a+b) (2a+b) = (2a)2 - (b)2 = 4a2 - b2 (2a - 5b) (2a + 5b) = (2a)2 - (5b)2 = 4a2 - 25b2 (3a+2b) (3a-2b) = (3a)2 - (2b)2 = 9a2 - 4b2 (-a +2b) (-a - 2b) = (-3a)2 - (2b)2 = 9a2 - 4b2 (4a + b) (- 4a + b) = (b)2 - (4a)2 = b2 - 16a2 (-3b+2a) (+3b+2a) = (2a)2 - (3b)2 = 4a2 - 9b2 prof.sse: Conti - Piccione - Giacalone

Somma per differenza: esercizi (2a + 7)(2a - 7)= (3a - 4b)(3a+ 4b) = (-2x - 3y)(-2x+3y) = (a2 + 3b)(a2 - 3b) = (5a - 3b)(5a+ 3b) = (5a2+2b2)(5a2 -2b2) = (-3a3+2b2)(-3a3-2b2) = (2a + 3b)( -2a + 3b) = (7xy - 2x)( -7xy - 2x) = 4a2 - 49 9a2 - 16b2 4x2 - 9y2 a4 - 9b2 25a2 - 9b2 25a4 - 4b4 9a6 - 4b4 9b2 - 4a2 4x2 - 49x2y2 prof.sse: Conti - Piccione - Giacalone

Somma per differenza: esercizi [(a+b) - 1] [(a+b) +1] = (a+b)2 - 1 prof.sse: Conti - Piccione - Giacalone

Altri Prodotti Notevoli Somma di cubi Differenza di cubi La regola Esempi Esercizi proposti prof.sse: Conti - Piccione - Giacalone

Somma di Cubi: significato algebrico (a+b) (a2 - ab + b2 ) = = a3 - a2b + ab2 + a2b- ab2 + b3 = = a3 + b3 prof.sse: Conti - Piccione - Giacalone

Differenza di Cubi: significato algebrico (a - b) (a2 + ab + b2 ) = = a3 + a2b + ab2 - a2b- ab2 - b3 = = a3 - b3 prof.sse: Conti - Piccione - Giacalone

Somma o differenza di cubi: la regola (a+b)(a2 - ab + b2 ) = a3 + b3 Il prodotto della somma di due termini per il trinomio formato dal quadrato dei due termini e dalla differenza del loro prodotto è uguale al cubo del primo termine più il cubo del secondo termine (a - b)(a2 + ab + b2 ) = a3 - b3 Il prodotto della differenza di due termini per il trinomio formato dal quadrato dei due termini e dalla somma del loro prodotto è uguale al cubo del primo termine meno il cubo del secondo termine prof.sse: Conti - Piccione - Giacalone

Somma o Differenza di Cubi: esempi (2a + b)(4a2 - 2ab + b2) = (2a)3 + (b)3 = 8a3 + b3 (2a - b)(4a2 + 2ab + b2) = (2a)3 - (b)3 = 8a3 - b3 (3a+2b)(9a2- 6ab +4b2)= (3a)3 + (2b)3 = 27a3 + 8b3 (3a - 2b)(9a2+ 6ab +4b2)= (3a)3 - (2b)3 = 27a3 - 8b3 prof.sse: Conti - Piccione - Giacalone

Somma o Differenza di Cubi: esercizi (2a + 7)(4a2 - 14ab + 49)= (3a - 4b)(9a2+12ab+16b2) = (2x - 3y)(4x2 + 6xy + 9y2) = (a2 + 3b)(a4 +9b2 - 3a2b ) = (5a - 3b)(25a2+15ab+9b2) = (x2 + 2y2)(x4 - 2x2y2 + 4y4) = (3a3+ b2)(9a6- 3a3b2 + b4) = (2a + 3b)( 4a2 - 6ab+9b2) = (x - 2y)( x2 +2xy + 4y2) = 8a3 + 343 27a3 - 64b3 8x3 - 27y3 a6 + 27b3 125a3 - 27b3 x6 + 8y6 27a9 + b6 8a2 + 27b2 x3 - 8y3 prof.sse: Conti - Piccione - Giacalone