Un corpo di massa m= 0.5 kg, che si muove su di un piano orizzontale liscio con velocità v=0.5 m/s verso sinistra, colpisce una molla di costante elastica.

Slides:



Advertisements
Presentazioni simili
HALLIDAY - capitolo 7 problema 11
Advertisements

CINEMATICA SINTESI E APPUNTI.
Meccanica 5 31 marzo 2011 Lavoro. Principio di sovrapposizione
Meccanica 10 8 aprile 2011 Slittamento. Rotolamento puro
Esercizi di dinamica.
Esercizi sulla conservazione dell’energia
Principio di conservazione della quantità di moto
Primo principio della dinamica
Cinematica: moto dei corpi Dinamica: cause del moto
Applicazione h Si consideri un punto materiale
Urti Si parla di urti quando due punti materiali (o due sistemi di punti materiali) si scambiano energia e quantità di moto in un tempo estremamente breve.
Una forza orizzontale costante di 10 N è applicata a un cilindro di massa M=10kg e raggio R=0.20 m, attraverso una corda avvolta sul cilindro nel modo.
Lavoro ed energia cinetica: introduzione
Centro di massa Consideriamo un sistema di due punti materiali di masse m1 e m2 che possono muoversi in una dimensione lungo un asse x x m1 m2 x1 x2 xc.
Le forze conservative g P2 P1 U= energia potenziale
Il lavoro [L]=[F][L]=[ML-2T -2] S.I.: 1 Joule = 1 m2 kg s-2
Dinamica del punto materiale
Una sfera di raggio r =1 m è poggiata su un piano orizzontale e mantenuta fissa. Un cubetto di piccole dimensioni è posto in equilibrio instabile sulla.
Manubrio simmetrico Se il corpo è simmetrico rispetto all’asse di rotazione Il momento angolare totale è parallelo all’asse di rotazione Nel caso della.
Velocità media Abbiamo definito la velocità vettoriale media.
Un proiettile di massa 4.5 g è sparato orizzontalmente contro un blocco di legno di 2.4 kg stazionario su una superficie orizzontale. Il coefficiente di.
La quantità di moto La quantità di moto di un sistema di punti materiali si ottiene sommando le quantità di moto di ciascun punto materiale Ricordando.
La reazione vincolare Consideriamo un corpo fermo su di un tavolo orizzontale. La sua accelerazione è nulla. Dalla II legge di Newton ricaviamo che la.
Misura della costante elastica di una molla per via statica
Rotazione di un corpo rigido attorno ad un asse fisso
Velocità ed accelerazione
Consigli per la risoluzione dei problemi
Urto in una dimensione -Urto centrale
I diagramma del corpo libero con le forze agenti
Una sfera di raggio r =1 m è poggiata su un piano orizzontale e mantenuta fissa. Un cubetto di piccole dimensioni è posto in equilibrio instabile sulla.
Consigli per la risoluzione dei problemi
Dinamica del punto materiale
Il lavoro dipende dal percorso??
N mg La reazione Vincolare
La forza elettrostatica o di Coulomb
G.M. - Edile A 2002/03 Appli cazio ne Si consideri un punto materiale –posto ad un altezza h dal suolo, –posto su un piano inclinato liscio di altezza.
Il teorema dell’impulso
G.M. - Informatica B-Automazione 2002/03 Estensione della conservazione dellenergia ai sistemi di punti materiali Se tutte le forze interne ed esterne.
G.M. - Edile A 2002/03 Appli cazio ne Si consideri un punto materiale –posto ad un altezza h dal suolo, –posto su un piano inclinato liscio di altezza.
Lezione 4 Dinamica del punto
Lezione 5 Dinamica del punto
Moti con accelerazione costante
CINEMATICA DINAMICA ENERGIA. Cosa rappresenta la linea a ? a LO SPAZIO PERCORSO LA TRAIETTORIA LA POSIZIONE RAGGIUNTA ……………...
Esempio Un disco rigido omogeneo di massa M=1,4kg e raggio R=8,5cm rotola su un piano orizzontale alla velocità di 15cm/s. Quale è la sua energia cinetica?
Diagramma di corpo libero
Descrizione geometrica del moto
Biomeccanica Cinematica Dinamica Statica dei corpi rigidi
PRIMO PRINCIPIO DELLA DINAMICA
Esempio -1 Individuare il centro di massa di un sistema di tre particelle di massa m1 = 1kg, m2 = 2 kg, e m3 = 3kg, poste ai vertici di un triangolo.
Il moto armonico Palermo Filomena.
Esempio 1 Un blocco di massa m scivola lungo una superficie curva priva di attrito come in figura. In ogni istante, la forza normale N risulta perpendicolare.
Esercizi (attrito trascurabile)
Fisica: lezioni e problemi
E n e r g i a.
MOTO circolare uniforme
due argomenti strettamente connessi
1 Lezione VII Avviare la presentazione col tasto “Invio”
1 Lezione IX seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione VI – seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione VI Avviare la presentazione col tasto “Invio”
Esercizio-Tre blocchi di massa rispettivamente m 1 =5Kg, m 2 =2 Kg e m 3 =3Kg poggiano su un piano orizzontale e sono uniti da due funi (vedi figura).
Prof.ssa Veronica Matteo
Transcript della presentazione:

Un corpo di massa m= 0.5 kg, che si muove su di un piano orizzontale liscio con velocità v=0.5 m/s verso sinistra, colpisce una molla di costante elastica k=50N/m inizialmente non deformata. Determinare la massima compressione della molla. Determinare la velocità con cui il corpo abbandona la molla, quando questa ritorna nella condizione iniziale. Utilizzando la seconda legge di Newton, mostrare che il moto del corpo durante il tempo in cui è attaccato alla molla è armonico. Scrivere la legge oraria del moto e determinare la pulsazione angolare, l'ampiezza e la fase iniziale del moto armonico Determinare il periodo del moto armonico ed la durata dell'intervallo di tempo durante il quale il corpo resta in contatto con la molla. I esonero Oltre alla forza elastica che agisce quando il corpo è a contatto con la molla Le altr forze agenti sono: La forza peso (fa lavoro nullo: perpendicolare allo spostamento) La Normale (fa lavoro nullo: perpendicolare allo spostamento) Si conserva l’energia meccanica y O x i è l’istante iniziale quando il corpo entra in contatto con la molla f è l’istante finale, quando il corpo si ferma momentaneamente prima di invertire il moto (condizione di massima compressione della molla)

la velocità con cui il corpo abbandona la molla, quando questa ritorna nella condizione iniziale è uguale a quella di arrivo. La forza elastica è conservativa, le altre forze non hanno compiuto lavoro. Applichiamo la conservazione dell’energia con i è l’istante iniziale quando il corpo entra in contatto con la molla f è l’istante finale, quando il corpo si allotana dalla molla I esonero Dimostriamo che il moto è armonico: L’equazione lungo l’asse x è l’equazione tipica del moto armonico: l’accelerazione proporzionale all’opposto della posizione. La legge oraria sarà del tipo: Posizione iniziale Velocità iniziale

I esonero Posizione iniziale Velocità iniziale Il fatto che l’ampiezza deve essere positiva porta a concludere che E l’ampiezza vale Il periodo del moto armonico (se il corpo fosse attaccato alla molla): Per determinare la durata del moto si osservi che il corpo rimane in contatto con la molla per metà ciclo, quindi la durata del moto sarà metà del periodo: La legge oraria sarà del tipo:

Un eschimese seduto sulla cima di un blocco di ghiaccio di forma emisferica, come mostrato in figura, di raggio R=3 m, riceve una piccola spinta che lo va partire dalla sommità del blocco con una velocità di 1.9 m/s. Determinare l'angolo q, rispetto alla verticale, a cui l'eschimese si stacca dal ghiaccio. Determinare infine la distanza dal centro del blocco del punto di impatto al suolo. Si assuma il blocco di ghiaccio privo di attrito. I esonero Il problema è identico a quello svolto nella lezione 18 N q P Il distacco si avrà quando N=0 Troviamo la velocità in funzione di q con la conservazione dell’energia (osservaiamo che la Normale fa lavoro nullo). Poniamo U=0 alla sommità E’ l’unica cosa che cambia rispetto al problema della lezione 18

I esonero Cerchiamo ora il punto di atterraggio. q v P Facendo ripartire il cronometro nel momento del distacco.

Un orsetto di 25 kg si lascia scivolare, da fermo, per 12 m lungo un palo raggiungendo la velocità di 5.6 m/s. Quale variazione ha subito la sua energia potenziale? Qual è la sua energia cinetica subito prima di toccare il suolo? Qual è stata la forza media di attrito che ha agito sull'orsetto durante il suo moto? I esonero y L’energia potenziale della forza peso: Assegnando energia potenziale 0 ai punti sul piano y=0 12 m L’energia cinetica prima di toccare il suolo è data da: x Le forze che hanno agito sull’orsacchiotto durante la sua discesa: La forza peso conservativa La normale N, la forza perpendicolare alla superficie del palo dovuta al fatto che l’orsacchiotto per non cadere liberamente ha stretto a se il palo (non compie lavoro) La forza di attrito (dinamico) la component e parallela a l vincolo della reazione vincolare

Le altre forze agenti sul blocco sono Se l’angolo q della forza F agente sul blocco fermo cresce, le seguenti grandezze aumentano, diminuiscono o rimangono le stesse? (a)la componente x della forza Fx; (b)la forza di attrito statico fs; (c) la normale N; (d)la forza di attrito statico fsmax. (e) Se invece il blocco non fosse fermo, il modulo della forza d’attrito aumenterebbe, diminuirebbe o resterebbe uguale? I esonero N Fa P Le altre forze agenti sul blocco sono La forza peso La Reazione vincolare Con la componente normale N E la forza di attrito Statico se il corpo è fermo Dinamico se è in moto La seconda legge di Newton vale Proiettando nella direzione orizzontale x e verticale y: Da cui si ottiene: Pertanto se q aumenta La componente x della forza F diminuisce La forza di attrito statico diminuisce La normale N aumenta La forza di attriti statico massimo aumenta La forza di attrito dinamico aumenta