Una sfera di raggio r =1 m è poggiata su un piano orizzontale e mantenuta fissa. Un cubetto di piccole dimensioni è posto in equilibrio instabile sulla sommità della sfera. Il cubetto, spostato di pochissimo dalla posizione di equilibrio, comincia a scivolare sulla sfera con velocità iniziale nulla. Calcolare a che distanza cadrà sul piano orizzontale dal punto di appoggio della sfera. Applicazione N h v q P Questo termine aumenta (in valore assoluto) all’aumentare di q Questo termine diminuisce all’aumentare di q Per un certo valore di q, N si annullerà: in quel momento avverrà il distacco tra il cubetto e la sfera. Troviamo l’espressione della velocità in funzione di q, e imponiamo che N sia nulla.
Poniamo l’energia potenziale uguale a zero quando il cubetto si trova alla sommità della sfera. Applicazione y N h v q P x La normale N si annullerà quando Il distacco avverrà nel punto:
Applicazione La velocità al momento del distacco Le cui componenti x e y valgono y N h v q P Il moto dopo il distacco avverrà sotto la sola azione della forza peso (moto del proiettile) x Facendo ripartire il cronometro nel momento del distacco. L’istante in cui il cubetto impatta al suolo si ottiene imponendo y=0.
Un blocchetto di massa m può scorrere lungo una pista, priva di attrito, a spirale mostrata in figura. Da quale altezza sopra il punto più basso si dovrebbe lasciar cadere il blocchetto (con velocità iniziale nulla), per far si che riesca a fare un il giro completo del “ricciolo”? Quanto vale la forza complessiva agente sul blocchetto quando passa per il punto Q della figura? Applicazione Affinché ci sia il contatto occorre che N sia sempre maggiore di zero Il punto più delicato è la sommità del ricciolo in quanto in quella posizione v è minima Mentre il secondo termine diventa in modulo uguale a mg Occorre quindi imporre che N sia al massimo nulla al vertice del ricciolo: imporre cioè che, in quella posizione, la forza centripeta sia fornita dalla sola forza peso q N P
La velocità alla sommità del ricciolo deve quindi essere almeno: Applicazione Imponendo la relazione lavoro-energia tra il punto di partenza, ad altezza h e la sommità del ricciolo, si ottiene Tenendo conto del limite minimo su v, si ottiene: N P La velocità in Q:
Applicazione xo=0, yo=h vxo=? vyo=0 Due bambini stanno facendo una gara a chi riesce a centrare una scatoletta sul pavimento con una biglia sparata da una pistola a molla, montata su un tavolo orizzontale. Come si vede dalla figura, il bersaglio è piazzato a 2.20 m in orizzontale dal bordo del tavolo. Orazio comprime la molla di 1.10 cm, ma il suo tiro risulta corto di 27 cm. Di quanto deve comprimerla Giustina per fare centro? Ignorate gli attriti. Applicazione La biglia una volta rilasciata dalla molla ed abbandonato il tavolo si muove sotto l’azione della sola forza peso (moto del proiettile). Se si comincia a contare il tempo nel momento in cui la biglia abbandona il tavolo, le condizioni iniziali sono xo=0, yo=h vxo=? vyo=0 vxo è la velocità con cui la biglia abbandona la molla La legge oraria sarà: Indichiamo con Dt l’intervallo di tempo impiegato per cadere. Il percorso orizzontale effettuato sarà:
Dato che il primo lancio è corto, occorre aumentare la velocità vxo affinchè la biglia colpisca il bersaglio: Applicazione Dividendo membro a membro si ottiene: La velocità vxo1 è la velocità acquistata dalla biglia er una compressione di 1,1 cm della molla. Quale deve essere la compressione della molla per ottenere la velocità vxo2 che ci consentirà di colpire il bersaglio? Determiniamo la relazione tra compressione e velocità orizzontale della biglia. Durante l’espansione della molla, la biglia è sottoposta alla forza elastica, alla forza peso e alla Normale. Le ultime due forze compiono lavoro nullo, la forza elastica è conservativa. Si conserva l’energia meccanca totale
Applicazione Tarzan, che pesa 688 N, salta da una roccia appeso ad una provvidenziale liana lunga 18 m (vedi figura). Dall’alto della roccia al punto più basso della sua oscillazione cala di 3.2 m. La liana è soggetta a rompersi se la tensione supera 950 N. Determinare se la fune si romperà Se sì, determinare l’angolo rispetto alla verticale a cui avviene la rottura Se no, determinare il suo valore massimo.
Applicazione Un blocco di legno da 0.520 kg è saldamente attaccato ad una leggerissima molla orizzontale (k=180 N/m), ed è appoggiato su un tavolo orizzontale come mostrato in figura. Il blocco viene spostato in maniera da comprimere la molla di 5.0 cm e quindi rilasciato con velocità nulla. Si osserva che il blocco supera la posizione di equilibrio di 2.3 cm prima di fermarsi per poi tornare indietro. Determinare il coefficiente di attrito tra il tavolo ed il blocco di legno.
Le due masse mostrate in figura inizialmente sono poste ciascuna a 1 Le due masse mostrate in figura inizialmente sono poste ciascuna a 1.80 m dal suolo e la carrucola, priva di massa e di attrito, è a 4.80 m dal suolo. Qual è l’altezza massima raggiunta dal corpo più leggero una volta che il sistema viene lasciato libero di muoversi? Applicazione 4,80 m 2,2 kg 3,2 kg 1,80 m
Una particella di massa m= 50g scivola all’interno di una ciotola la cui sezione ha archi circolari su ciascun fianco ed una parte centrale orizzontale piatta tra i punti a e b di larghezza 20 cm. Le parti curve sono prive di attriti mentre per la parte piatta il coefficiente di attrito dinamico è mk= 0,15. L particella è rilasciata a riposo sul bordo della ciotola che è 10 cm al di sopra della parte piatta. Qual è la velocità in a? Quella in b? Dove si fermerà alla fine la particella? Applicazione a b 20 cm 10 cm
Applicazione Un blocco di 3.22 kg scivola lungo un piano inclinato di 28.0° e privo di attrito e, dopo avere percorso una distanza d, comprime una molla per 21.4 cm per poi arrestarsi momentaneamente. La costante elastica della molla è di 427 N/m. Quanto misura d? Dopo aver compresso la molla, il blocco aumenta la sua velocità prima di iniziare a decelerare nuovamente. Quale distanza percorre prima di raggiungere la sua massima velocità e cominciare a rallentare?