La forza di gravitazione universale è conservativa

Slides:



Advertisements
Presentazioni simili
Moti Circolari e oscillatori
Advertisements

LA DESCRIZIONE DEL MOTO
Meccanica 7 28 marzo 2011 Corpi estesi. Forze interne al sistema
Meccanica 8 31 marzo 2011 Teorema del momento angolare. 2° eq. Cardinale Conservazione del momento angolare Sistema del centro di massa. Teoremi di Koenig.
Esercizio 1 Un filo indefinito è costituito da due semirette AB e BC formanti un angolo retto, come in figura Il filo è percorso da una corrente I = 10.
Le oscillazioni Moto armonico semplice x (positivo o negativo)
MECCANICA (descrizione del moto dei corpi)
Cambiamento del Sistema di Riferimento
Applicazione h Si consideri un punto materiale
Urti Si parla di urti quando due punti materiali (o due sistemi di punti materiali) si scambiano energia e quantità di moto in un tempo estremamente breve.
Una forza orizzontale costante di 10 N è applicata a un cilindro di massa M=10kg e raggio R=0.20 m, attraverso una corda avvolta sul cilindro nel modo.
Lavoro ed energia cinetica: introduzione
Centro di massa Consideriamo un sistema di due punti materiali di masse m1 e m2 che possono muoversi in una dimensione lungo un asse x x m1 m2 x1 x2 xc.
Le forze conservative g P2 P1 U= energia potenziale
Il lavoro [L]=[F][L]=[ML-2T -2] S.I.: 1 Joule = 1 m2 kg s-2
Centro di Massa di corpi rigidi
Un corpo di massa m= 0.5 kg, che si muove su di un piano orizzontale liscio con velocità v=0.5 m/s verso sinistra, colpisce una molla di costante elastica.
Una sfera di raggio r =1 m è poggiata su un piano orizzontale e mantenuta fissa. Un cubetto di piccole dimensioni è posto in equilibrio instabile sulla.
Manubrio simmetrico Se il corpo è simmetrico rispetto all’asse di rotazione Il momento angolare totale è parallelo all’asse di rotazione Nel caso della.
Il problema del moto Conoscendo la legge oraria, ossia conoscendo la posizione del punto materiale ad ogni istante di tempo: Con una prima derivazione.
Un proiettile di massa 4.5 g è sparato orizzontalmente contro un blocco di legno di 2.4 kg stazionario su una superficie orizzontale. Il coefficiente di.
La quantità di moto Data una particella di massa m che si muove con velocità v Si definisce quantità di moto la quantità: È un vettore Prodotto di uno.
Il moto armonico Altro esempio interessante di moto è quello armonico caratterizzato dal fatto che l’accelerazione è proporzionale all’opposto della posizione:
La quantità di moto La quantità di moto di un sistema di punti materiali si ottiene sommando le quantità di moto di ciascun punto materiale Ricordando.
La reazione vincolare Consideriamo un corpo fermo su di un tavolo orizzontale. La sua accelerazione è nulla. Dalla II legge di Newton ricaviamo che la.
La forza di gravitazione universale è conservativa
Il corpo rigido È un particolare sistema di punti materiali in cui le distanze, tra due qualunque dei suoi punti, non variano nel tempo un corpo rigido.
Rotazione di un corpo rigido attorno ad un asse fisso
Velocità ed accelerazione
Urto in una dimensione -Urto centrale
Dinamica dei sistemi di punti
Il centro di massa di corpi simmetrici
Consigli per la risoluzione dei problemi
Il lavoro oppure [L]=[F][L]=[ML2T -2] S.I.: 1 Joule = 1 m2 kg s-2
Dinamica dei sistemi di punti
L’accelerazione riferita alla traiettoria
Applicazione Auto Camion xAo=0 m xCo=0 m vAox=0 m/s vCox=9.5 m/s
La forza elettrostatica o di Coulomb
Le cause del moto: la situazione prima di Galilei e di Newton
Il prodotto vettoriale
G.M. - Edile A 2002/03 Appli cazio ne Si consideri un punto materiale –posto ad un altezza h dal suolo, –posto su un piano inclinato liscio di altezza.
G.M. - Informatica B-Automazione 2002/03 Estensione della conservazione dellenergia ai sistemi di punti materiali Se tutte le forze interne ed esterne.
Lezione 4 Dinamica del punto
Lezione 7 Dinamica dei sistemi di punti materiali
Lezione 8 Dinamica del corpo rigido
Agenda di oggi Sistemi di Particelle Centro di massa
Pg 1 Agenda di oggi Agenda di oggi Le tre leggi di Newton Come e perchè un oggetto si muove? Dinamica.
Lo studio delle cause del moto: dinamica
Moto rotatorio Il moto di un corpo rigido può essere descritto come costituito da un moto traslatorio del suo centro di massa più un moto rotatorio attorno.
I PRINCIPI FONDAMENTALI DELLA DINAMICA (Leggi di Newton)
Esempio Un disco rigido omogeneo di massa M=1,4kg e raggio R=8,5cm rotola su un piano orizzontale alla velocità di 15cm/s. Quale è la sua energia cinetica?
Il Movimento Cinematica.
Diagramma di corpo libero
1 MOTI PIANI Cosenza Ottavio Serra. 2 La velocità è tangente alla traiettoria v (P P, st, (P–P)/(t-t)v.
Biomeccanica Cinematica Dinamica Statica dei corpi rigidi
PRIMO PRINCIPIO DELLA DINAMICA
(Potenziale ed energia potenziale)
del corpo rigido definizione
Una forza orizzontale costante F=1,2N è applicata tangenzialmente all’albero di un disco solido che ruota attorno ad un asse verticale. Il raggio dell’albero.
Esempio -1 Individuare il centro di massa di un sistema di tre particelle di massa m1 = 1kg, m2 = 2 kg, e m3 = 3kg, poste ai vertici di un triangolo.
Il moto armonico Palermo Filomena.
Esercizi (attrito trascurabile)
Una struttura rigida consistente in un anello sottile, di massa m e raggio R=0.15m e in una bacchetta sottile di massa m e lunghezza l=2,0R, disposti.
6. I principi della dinamica (II)
Avviare la presentazione col tasto “Invio”
centro di massa e momento di inerzia
Esercizio-Tre blocchi di massa rispettivamente m 1 =5Kg, m 2 =2 Kg e m 3 =3Kg poggiano su un piano orizzontale e sono uniti da due funi (vedi figura).
Prof.ssa Veronica Matteo
FORZA Qualsiasi causa che altera lo stato di quiete o di MRU di un corpo (se libero) o che lo deforma (se vincolato)
Moti relativi y P y’ O O’ x  x’
Transcript della presentazione:

L’energia potenziale della forza di gravitazione universale - la velocità di fuga La forza di gravitazione universale è conservativa La velocità di fuga dalla terra: Per la fuga dalla terra, E>=0:

Sistemi di particelle Abbiamo mostrato come è possibile determinare il moto di un punto materiale Si determinano le forze che agiscono sul punto materiale Si applica la seconda legge di Newton Si risolvono le tre equazioni differenziali per trovare il moto dei punti proiezione sugli assi (se le equazioni sono indipendenti) Altrimenti si risolve il sistema di tre equazioni derivanti alla seconda legge di Newton. Si determina così la legge oraria. Vediamo ora come si può descrivere il moto di sistemi più complessi che non possono essere rappresentati con un punto materiale. Studiamo cioè i Sistemi di punti materiali! Proviamo ad operare come abbiamo imparato a fare.

Sistemi di particelle Si può scrivere n volte la seconda legge della dinamica, una volta per ciascun punto facente parte del sistema poi si può risolvere il sistema di 3n equazioni differenziali che viene fuori. Molto difficile!! È possibile, rinunciando ad una descrizione dettagliata del moto delle singole particelle, ottenere almeno una descrizione del moto dell’insieme delle particelle?

Il centro di massa di un sistema di punti materiali

Il centro di massa del sistema terra-sole Il centro di massa si trova sul segmento che congiunge i due punti materiali È più vicino al punto materiale di massa maggiore

Tre masse uguali sono ai vertici di un triangolo equilatero di lato L Tre masse uguali sono ai vertici di un triangolo equilatero di lato L. Determinare la posizione del centro di massa Applicazione y 3 L x 1 2 Posso determinare prima il centro di massa delle particelle 1 e 2. 1 2 x Calcoliamo ora la posizione del CM della particella 3 e di una particella di massa 2m posta nella posizione del CM delle particelle 1 e 2. Il centro di massa si troverà sulla congiungente: x y 1 3 CM12

Il centro di massa di corpi simmetrici x x1 x2 Centro di massa di una sbarra omogenea Asse di simmetria Centro di simmetria Centro di massa di una disco omogeneo

L’elemento oscillante di un pendolo è costituito da una sbarretta di massa ms=0.5kg e lunga 50 cm a cui è attaccata un disco di massa md=1kg di 20cm di diametro. Determinare la posizione del CM. Applicazione x y x y CM della sbarra (0,0.45m) ms=0.5kg CM del Disco (0,0.1m) md=1kg

Nella figura si vede una piastra quadrata di lamiera uniforme con lato di 6m, dalla quale è stato ritagliato un pezzo quadrato di 2 m di lato con centro nel punto x=2m,y=0m L’origine delle coordinate coincide con il centro della piastra quadrata. Trovare le coordinate x e y del CM. Applicazione x y CM1 CM2 CM Per ragioni di simmetria CM Intera piastra (0,0 m) M CM1 incognito (?,0) m1=(36-4)/36M=8/9M CM2 (2,0) m2=1/9M

Il centro di massa di corpi continui y dm r x z

Determinare la posizione del centro di massa di un semidisco omogeneo di massa M e raggio R. Applicazione y per ragioni di simmetria Dividiamo il semicerchio in strisce molte sottili Sostituiamo ciascuna striscia con il suo centro di massa (0,y) Associamo a ciascun CM parziale la massa dell’intera striscia. y+dy y q x

La velocità del centro di massa Se i vari punti materiali si muovono Anche il centro di massa si muoverà Calcoliamo la sua velocità

L’accelerazione del centro di massa Possiamo anche calcolarci l’accelerazione del centro di massa

Un’auto di massa 1000 kg è ferma ad un semaforo Un’auto di massa 1000 kg è ferma ad un semaforo. Quando viene il verde (t=0s) parte con una accelerazione costante di 4 m/s2. Nello stesso istante sopraggiunge con velocità costante di 8m/s un camion di massa 2000kg che sorpassa l’auto. A che distanza dal semaforo si troverà il centro di massa del sistema auto camion per t=3.0s? Quale sarà la sua velocità? Applicazione t=0 x O t=3s x O

Un’auto di massa 1000 kg è ferma ad un semaforo Un’auto di massa 1000 kg è ferma ad un semaforo. Quando viene il verde (t=0s) parte con una accelerazione costante di 4 m/s2. Nello stesso istante sopraggiunge con velocità costante di 8m/s un camion di massa 2000kg che sorpassa l’auto. A che distanza dal semaforo si troverà il centro di massa del sistema auto camion per t=3.0s? Quale sarà la sua velocità? Applicazione t=0 O x

Ricapitoliamo

Il teorema del centro di massa dalla definizione di accelerazione del CM Forze interne Le forze dovute alle altre particelle che fanno parte del sistema di punti materiali Forze esterne Le forze dovute alle altre particelle che non fanno parte del sistema di punti materiali

Il teorema del centro di massa Risultante delle forze esterne Risultante delle forze interne La risultante delle forze interne è nulla Le forze interne sono a coppia Ogni coppia ha risultante nulla La risultante è la somma di tanti termini tutti nulli Il caso di n=3

Il teorema del centro di massa L’accelerazione del centro di massa è dovuta alle sole forze esterne. il centro di massa si muove come un punto materiale, avente una massa pari alla massa totale del sistema, sottoposto all'azione della risultante delle sole forze esterne agenti sul sistema. I singoli punti possono avere un moto complicato Il moto del centro di massa è influenzato dalle sole forze esterne Il moto del centro di massa rappresenta il moto di insieme del sistema Il moto dell’automobile è determinato dalle forze esterne: la forza peso, la normale esercitata dall’asfalto, la forza di attrito esercitata dall’asfalto, la resistenza passiva offerta dall’aria