Le proprietà dei corpi solidi

Slides:



Advertisements
Presentazioni simili
Statica dei fluidi Legge di Pascal. Consideriamo un recipiente contenente un liquido (per esempio dell'acqua) dotato di un pistone ben  aderente alla.
Advertisements

Il Diagramma di Gowin Problem Solving.
I corpi in natura Gli oggetti che ci circondano si presentano come aggregati di punti materiali (sistemi di punti materiali) Tre stati Solido Liquido Gassoso.
La misura empirica della temperatura
IMPIANTI TECNICI E DISEGNO
Definizioni Fluido E’ un corpo materiale che può subire grandi variazioni di forma sotto l’azione di forze comunque piccole che tendono a diventare trascurabili.
A. Stefanel - F1: Introduzione alla fisica dei fluidi
Meccanica 11 1 aprile 2011 Elasticità Sforzo e deformazione
Liceo Scientifico “ M. Curie “
Pascal Stevin Archimede Torricelli Bernouilli
Pascal Stevino Torricelli
Principio di Archimede nei fluidi gassosi
LE PROPRIETA’ DELLA MATERIA
Fluidi.
Pressione in un fluido:
L’equilibrio dei fluidi.
Applicazione h Si consideri un punto materiale
Le forze conservative g P2 P1 U= energia potenziale
(p0=1,01×105Pa = pressione atmosferica)
Un corpo di massa m= 0.5 kg, che si muove su di un piano orizzontale liscio con velocità v=0.5 m/s verso sinistra, colpisce una molla di costante elastica.
Fluidi Si definisce fluido una sostanza che può scorrere (non può sopportare forze tangenziali alla sua superficie) sono fluidi sia i liquidi che i gas.
Un proiettile di massa 4.5 g è sparato orizzontalmente contro un blocco di legno di 2.4 kg stazionario su una superficie orizzontale. Il coefficiente di.
La reazione vincolare Consideriamo un corpo fermo su di un tavolo orizzontale. La sua accelerazione è nulla. Dalla II legge di Newton ricaviamo che la.
Misura della costante elastica di una molla per via statica
Consigli per la risoluzione dei problemi
Proprietà di un Gas Può essere compresso facilmente
Chimica Fisica La Pressione Universita’ degli Studi dell’Insubria
N mg La reazione Vincolare
La forza elettrostatica o di Coulomb
I corpi in natura Gli oggetti che ci circondano si presentano come aggregati di punti materiali (sistemi di punti materiali) Tre stati Solido Liquido Gassoso.
Lezione 4 Dinamica del punto
Fluidi: gas e liquidi Cambiamenti di stato
FLUIDI Definizione PRESSIONE
I PRINCIPI FONDAMENTALI DELLA DINAMICA (Leggi di Newton)
LE PROPRIETA’ DELLA MATERIA
Gli stati della materia
11. Gas e liquidi in equilibrio
I fluidi Liquidi e aeriformi
STATI DI AGGREGAZIONE DELLA MATERIA
14. L’equilibrio dei fluidi (II)
14. L’equilibrio dei fluidi
Leggi di Pascal – Stevino - Archimede
Produzione e trattamento dell’aria compressa
Meccanica dei Fluidi.
Dinamica dei fluidi.
Solidi, liquidi e aeriformi
MECCANICA DEI LIQUIDI.
Solidi, liquidi e gas Un solido è un corpo rigido e ha forma e volume propri. Un liquido è un fluido che assume la forma del recipiente che lo contiene.
IDROSTATICA.
STATICA DEI FLUIDI Pressione Spinta di Archimede Legge di Stevin
Gli stati condensati I liquidi e i solidi.
I Fluidi Prof. Antonelli Roberto
LA FORZA.
11. Gas e liquidi in equilibrio
11. Gas e liquidi in equilibrio
La Statica La statica è una parte della meccanica che studia l’ equilibrio dei corpi. Prof Giovanni Ianne.
GAS: caratteristiche fondamentali
Statica dei fluidi per la secondaria superiore
LABORATORI DI FORMAZIONE in ingresso del personale docente ed educativo neoassunto A.S. 2015/2016 Docente Neoassunto: LEO RAFFAELE Classe di concorso.
Termodinamica Introduzione. La TERMODINAMICA è nata per studiare i fenomeni termici, in particolare per studiare il funzionamento delle macchine termiche.
La pressione  La stessa forza può avere effetti diversi a seconda della superficie su cui agisce. Ad esempio chi cammina sulla neve:
L’unità di misura della densità nel SI è il kg m –3 Densità FLUIDOSTATICA HOEPLI S. Di Pietro Tecnologie chimiche industriali vol.1.
I FLUIDI I FLUIDI sono l’insieme delle sostanze liquide e aeriformi. Essi sono costituiti da MOLECOLE, particelle non visibili a occhio nudo. Rispetto.
Meccanica dei fluidi Solidi e fluidi Solidi e fluidi I solidi mantengono la forma I solidi mantengono la forma I fluidi sono un insieme di molecole disposte.
Transcript della presentazione:

Le proprietà dei corpi solidi Corpo solido <-----> corpo rigido In realtà i solidi sottoposti a sollecitazione subiscono delle piccole deformazioni Il fatto che le deformazioni siano piccole dipende dalla struttura cristallina e dalle forze molto intense che mantengono gli atomi nella loro posizione all’interno del reticolo È l’intensità elevatissima tra gli atomi che fa rassomigliare i solidi a corpi rigidi. Gli atomi sono in continua oscillazione attorno alla posizione di equilibrio Con una ampiezza che dipende dalla temperatura

I diversi tipi di sollecitazione Trazione Produce un allungamento del campione Compressione Produce una accorciamento del campione Taglio Produce lo scorrimento di una sezione del campione sull’altra Compressione idrostatica La forza in questo caso agisce su tutta la superficie del campione ed è perpendicolare alla superficie stessa Produce una diminuzione del volume del campione Sforzo Forza applicata diviso per la sezione del campione Deformazione relativa La deformazione prodotta diviso per il valore della grandezza originaria

Il comportamento dei materiali I moduli di elasticità, E e G, si misurano in N/m2

Il comportamento dei materiali

Un tondino di acciaio da costruzione ha raggio R=9 Un tondino di acciaio da costruzione ha raggio R=9.5 mm e lunghezza L =81 cm. Una forza di modulo 6.2 x104 lo tira longitudinalmente. Qual è lo sforzo nel tondino? Quanto l’allungamento e la sua deformazione? Applicazione La sezione del tondino è data da: Lo sforzo: La deformazione: L’allungamento:

Risonanza Per realizzare una qualunque struttura meccanica, dalla più semplice alla più complicata, si utilizzano corpi solidi collegati insieme poiché i corpi solidi hanno un comportamento elastico, ci aspettiamo altrettanto da una qualunque struttura meccanica. Sottoponendo la struttura ad una sollecitazione rapida (un impulso), Essa entrerà in vibrazione Le vibrazioni si smorzeranno più o meno rapidamente a causa degli attriti Però se le sollecitazioni sono periodiche le vibrazioni potranno sostenersi Per avere un’idea di quello che succede si può studiare l’oscillatore armonico sottoposto ad una forza variabile nel tempo.

I fluidi Per fluidi si intendono i gas ed i liquidi le distanze tra le molecole sono in media più grandi nel caso dei fluidi rispetto ai solidi, le forze di interazione sono estremamente meno intense: nei fluidi le molecole sono debolmente legate l’una all’altra esse non occupano posizioni predeterminate all’interno del fluido ma possono muoversi al suo interno. I fluidi non oppongono alcuna resistenza a sollecitazioni di taglio Se suddividiamo in due parti il fluido con una superficie ideale è possibile far scorrere le due parti di fluido l’una rispetto all’altra. Si immagini la lama di un coltello che scorre all’interno di un fluido. Conseguenza: Se separiamo il fluido in due parti mediante una superficie qualsiasi le forze che una parte di fluido esercita sull’altra hanno solo la componete normale alla superficie. Questo vale per qualunque superficie.

La pressione idrostatica Sulla superficie immaginaria con cui abbiamo suddiviso il fluido in due parti prendiamo una piccola area, DA, attorno al punto P Si definisce pressione idrostatica nel punto P la grandezza scalare attenuta facendo il rapporto della forza (normale) che una delle due parti di fluido esercita sull’altra attraverso l’area DA, diviso per l’area DA (eventualmente si fa il limite per DA che tende a zero) : Le dimensioni Le unità di misura nl SI sono N/m2, che viene anche chiamata “pascal”, Pa. Altre unità di misura della pressione: Atmosfera (atm)=1 atmosfera è la pressione atmosferica al livello del mare torr (o mm Hg) è la pressione che esercita una colonna di 1 mm di mercurio 1 bar= 105 Pa

La pressione sulle pareti del recipiente Se la superficie ideale tracciata all’interno di un fluido viene sostituita da una superficie reale la parete del contenitore Possiamo usare la stessa definizione per valutare al pressione sulle pareti del contenitore DA è una piccola areola attorno al punto P in cui si vuole misurare la pressione Fn è la forza normale esercitata dalla fluido sulla piccola porzione DA della parete A cosa è dovuta questa forza normale? Agli urti delle particelle che costituiscono il fluido sulle pareti Per un urto elastico su una parete liscia La molecola subisce la forza F dalla parete Per il principio di azione e reazione esercita sulla parete una forza uguale e contraria.

La densità Si definisce densità media del fluido Si definisce densità del fluido nel punto P Il limite in senso “fisico” I fluidi si distinguono in Comprimibili Incomprimibili

La legge di Stevino Consideriamo in fluido incompribile r è uniforme in tutto il volume del fluido Consideriamo un fluido stazionario Isoliamo idealmente una porzione di fluido racchiusa in un cilindro di area di base A orizzontale e altezza h (h=y1-y2) Se tutto il fluido è stazionario, questa porzione è ferma Applichiamo la secondo legge della dinamica In particolare la sua componente verticale h profondità Punti alla stessa profondità hanno la stessa pressione Punti alla stessa pressione si trovano alla stessa profondità La superficie di separazione tra l’aria e l’acqua è orizzontale

A che profondità bisogna immergersi in mare perché la pressione raddoppi rispetto a quella in superficie Applicazione Dalla legge di Stevino ricaviamo che la pressione alla profondità h in un liquido conoscendo quella in superficie Po, è data da: Vogliamo trovare h* in modo che P sia uguale a 2Po. Da cui: h Ogni 10 m di profondità la pressione aumenta di un atmosfera Se al posto dell’acqua c’è un gas, la densità del gas è circa 1000 volte più piccola di quella dell’acqua Alla profondità di 10 m in un gas la pressione sarebbe cambiata solo di 1 millesimo di atmosfera Per recipienti di piccolo volume, entro i 10 m di profondità, possiamo considerare la pressione costante in tutto il recipiente.

La misura della pressione Manometro a tubo aperto Misura la differenza di pressione tra due ambienti Misura relativa di pressione Barometro Per la misura assoluta della pressione atmosferica

Il principio di Pascal Consideriamo un fluido contenuto in un cilindro racchiuso da un pistone mobile Indichiamo con Pest la pressione esercitata dal pistone sul fluido La pressione in tutti gli altri punti sarà: Supponiamo ora di variare la pressione Pest , per esempio variando il carico sul pistone. Sia DPest la variazione di Pest. In tutti gli altri punti del fluido osserveremo una variazione di pressione: Se produco una variazione di pressione in un punto del fluido questa si ripercuote su tutto il fluido.

La leva idraulica Consideriamo due cilindri pieni di un fluido incomprimibile (olio) In condizioni di riposo entrambi i pistoni sono alla stessa altezza e la pressione del fluido subito sotto i pistoni è la pressione atmosferica Se spingiamo il pistone Ai con una forza Fi, facciamo cioè aumentare la pressione del fluido in uno dei rami del pistone, allora la pressione aumenterà dappertutto della stessa quantità Il secondo pistone sarà quindi in grado di esercitare sull’ambiente esterno una forza La forza risulta amplificata per un fattore pari al rapporto tra le aree Si osservi che lo spostamento del secondo pistone è ridotto rispetto a quello del primo dello stesso fattore. Il lavoro da fare per sollevare un oggetto pesante è sempre lo stesso

Il principio di Archimede La Spinta di Archimede è la forza a cui è soggetto un corpo quando è immerso nel fluido Consideriamo, in un fluido stazionario, la porzione di fluido racchiusa in una superficie chiusa che riproduce perfettamente la superficie esterna di un corpo. Questa porzione di fluido è in equilibrio (fluido stazionario) La risultante delle forze che la porzione di fluido all’esterno del contorno esercita su quella all’interno del contorno è proprio uguale al peso del fluido racchiuso all’interno del contorno. Quando metteremo il corpo, la parte di fluido esterna al contorno del corpo è la stessa , continuerà ad esercitare sempre la stessa forza: La spinta di Archimede è pari al peso della massa di acqua spostata dal corpo