Algoritmi e Strutture Dati III. Algoritmi di Ordinamento
Algoritmi di ordinamento Selection Sort Quick Sort Lower bound alla complessità degli algoritmi di ordinamento asd_library.sorting.SortingAlgorithms
Selection Sort L’elemento minimo viene messo in posizione 0 SelectionSort(dati[]) { for (i=0; i<dati.length-1; i++) { min = <Seleziona min. in dati[i], …. , dati[dati.length-1]> <Scambia min con dati[i]; } L’elemento minimo viene messo in posizione 0 Si itera il procedimento sulle posizioni successive
Selection Sort/2 Versione ricorsiva SelectionSort(dati[], i) { min = <Seleziona min. in dati[i], …. , dati[dati.length-1]> <Scambia min con dati[i]; SelectionSort(dati[], i+1) ; } …… SelectionSort(dati[], 0) ; Versione ricorsiva
Selection Sort/3 Ordinamento del vettore di interi {5, 2, 3, 8, 1}
Come ordinare oggetti diversi da numeri Ordinare un vettore i cui elementi sono oggetti complessi. Es. oggetti della classe: class Persona { String cognome; String CF; public Persona (String cognome, String CF) { this.cognome = cognome; this.CF = CF; } Come ordinare un array di tali oggetti rispetto al cognome ?
Come ordinare oggetti diversi da numeri/2 Occorre: Dichiarare che tra gli oggetti della classe (Persona nell’esempio) è definito un ordinamento Dichiarare rispetto a quale o a quali membri della classe è definito l’ordinamento (il cognome nel nostro caso) Definire la regola che stabilisce l’ordinamento tra due oggetti della classe (nel nostro caso: due oggetti di tipo persona sono ordinati alfabeticamente secondo i rispettivi cognomi) In C++ si possono sovraccaricare gli operatori In Java si può dichiarare che la classe (Persona) implementa l’interfaccia Comparable (non è la sola possibilità)
Come ordinare oggetti diversi da numeri/3 Il passo 1 si traduce così: class Persona implements Comparable { …… } I passi 2 e 3 consistono nell’implementare l’unico metodo previsto dall’interfaccia Comparable: int compareTo(Object o) compareTo definisce le regole che stabiliscono l’ordinamento tra oggetti della classe (nel nostro caso, l’ordinamento è quello alfabetico sui cognomi)
Come ordinare oggetti diversi da numeri/4 Quindi: class Persona implements Comparable { String cognome; String CF; public Persona (String cognome, String CF) { this.cognome = cognome; this.CF = CF; } public int compareTo (Object pers) { return cognome.compareTo(((Persona)pers).cognome); Nota: occorre fare il cast perché compareTo vuole un Object
Selection Sort/4 public void selectionsort(Comparable[] data) { int i, j, least; for (i = 0; i < data.length-1; i++) { for (j = i+1, least = i; j < data.length; j++) if (data[j].compareTo(data[least]) < 0) least = j; swap(data, least, i); /* Scambia gli oggetti in pos. i e least */ } Es.: versione ricorsiva
Selection Sort - Tempo di esecuzione Supponiamo che l’array contenga n elementi Alla i-esima iterazione occorre trovare il massimo di n-i+1 elementi e sono quindi necessari n-i confronti Vi sono n-1 cicli Costo = Si osservi che tale costo non dipende dall’ eventuale ordinamento parziale dell’array (cfr. Insertion Sort)
Quick Sort Disponi l’elemento maggiore in ultima posizione quicksort(array[]) { if (array.length>1) { Scegli bound; /* subarray1 e subarray2 */ while (ci sono elementi in array) if (generico elemento < bound) inserisci elemento in subarray1; else inserisci elemento in subarray2; quicksort(subarray1); quicksort(subarray2); }
Quick Sort/2 Array subarray1 < bound subarray2 >= bound
Partizionamento dell’array [8 5 4 7 6 1 6 3 8 12 10] con quicksort
Proprietà di Quicksort Un’iterazione termina quando lower supera upper data[first+1..upper]: elementi minori o uguali del pivot data[upper+1..last]: elementi maggiori del pivot Si scambia il pivot con l’elemento in posizione upper Si chiama ricorsivamente QuickSort su data[first+1..upper-1] e su data[upper+1..last], se gli array hanno almeno due elementi Occorre evitare upper=last, per cui si dispone l’elemento maggiore in ultima posizione
Partizionamento dell’array [8 5 4 7 6 1 6 3 8 12 10] con quicksort
Quick Sort/3 void quicksort(Comparable[] data, int first, int last) { int lower = first + 1, upper = last; swap(data, first, (first+last)/2); /* Questo serve solo perché così, in pratica è spesso più veloce */ Comparable bound = data[first]; while( (lower <= upper)){ while(data[lower].compareTo(bound) <= 0) lower++; while (bound.compareTo(data[upper]) < 0) upper--; if (lower < upper) swap(data, lower++, upper--); else lower++; } /* End while */
Quick Sort/4 swap(data, upper, first); if (first < upper-1) /* se first == upper-1 il sottoarray ha solo 2 elementi ed è ordinato */ quicksort(data, first, upper-1); if (upper+1 < last) quicksort(data, upper+1, last); }
Analisi del Quick Sort Costo = O(No. confronti) Costo O(n2) nel caso peggiore Costo O(n log n) nel caso migliore e medio In pratica l’algoritmo è efficiente Scelta pivot fondamentale
Quick Sort – Caso peggiore No. confronti per sotto-array Array n-1 n-2 2 1 n-1 volte L’elemento di pivot è sempre il minimo Costo = O(n-1+n-2+...+2+1) = O(n2)
Quick Sort – Caso migliore No. confronti per sotto-array n potenza di 2 per semplicità Array n-1 n/2-1 2 1 log n+1 volte n/4-1 Costo =
Efficienza algoritmi di ordinamento Merge Sort (e Heap Sort): O(n log n) Quick Sort, Selection Sort, Insertion Sort: O(n2) Quick Sort: O(n log n) nel caso migliore Selection Sort: O(n2) in tutti i casi Insertion Sort: O(n) nel caso migliore Domanda: qual è l’efficienza massima (complessità minima) ottenibile nel caso peggiore -> Lower bound
Ordinamento – limiti inferiori Osservazione fondamentale: tutti gli algoritmi devono confrontare elementi Dati ai, ak, tre casi possibili: ai < ak, ai > ak, oppure ai=ak Si assume per semplicità che tutti gli elementi siano distinti Si assume dunque che tutti i confronti abbiano la forma ai < ak, e il risultato del confronto sia vero o falso Nota: se gli elementi possono avere lo stesso valore allora si considerano solo confronti del tipo ai <= ak
Alberi di decisione a1:a2 < > a2:a3 a1:a3 < > > < Albero di decisione per Insertion Sort sull’insieme {a1, a2, a3} a1:a2 < > a2:a3 a1:a3 < > > < a1,a2,a3 a1:a3 a2,a1,a3 a2:a3 > < > < a1,a3,a2 a3,a1,a2 a2,a3,a1 a3,a2,a1 Un albero di decisione rappresenta i confronti eseguiti da un algoritmo su un dato input Ogni foglia corrisponde ad una delle possibili permutazioni
Alberi di decisione/2 a1:a2 < > a2:a3 a1:a3 < > > < Albero di decisione per Insertion Sort sull’insieme {a1, a2, a3} a1:a2 < > a2:a3 a1:a3 < > > < a1,a2,a3 a1:a3 a2,a1,a3 a2:a3 > < > < a1,a3,a2 a3,a1,a2 a2,a3,a1 a3,a2,a1 Vi sono n! possibili permutazioni -> l’albero deve contenere n! foglie L’esecuzione di un algoritmo corrisponde ad un cammino sull’albero di decisione corrispondente all’input considerato
Alberi di decisione/3 Riassumendo: Albero binario Deve contenere n! foglie Il più lungo cammino dalla radice ad una foglia (altezza) rappresenta il No. confronti che l’algoritmo deve eseguire nel caso peggiore Teorema: qualunque albero di decisione che ordina n elementi ha altezza Ώ(n log n) Corollario: nessun algoritmo di ordinamento ha complessità migliore di Ώ(n log n) Nota: esistono algoritmi di ordinamento con complessità più bassa, ma richiedono informazioni aggiuntive
Dimostrazione teorema Un albero di decisione è binario Albero binario di altezza h non ha più di 2h-1 foglie 1 1=21-1 2 2= 22-1 3 4= 23-1 h 2h-1 Dobbiamo avere: 2h-1 > No. foglie = n! h-1 > log(n!)
Dimostrazione teorema/2 n! > (n/e)n (approssimazione di Stirling) h-1 > log(n/e)n = n log(n/e) = n logn – n loge = Ώ(n log n) Corollario: gli algoritmi Merge Sort e Heap Sort hanno complessità asintotica ottima
Il problema della Selezione Determinare l’i-esimo elemento più piccolo di una collezione di n elementi. Soluzione banale: ordinare l’insieme di elementi e determinare l’elemento in posizione i. Costo: O(n log n). E’ possibile determinare l’i-esimo elemento con costo lineare?
Select(i) – Algoritmo dei mediani Dividi in n/5 gruppi di 5 elementi ciascuno Determina il mediano di ogni gruppo di 5 elementi Invoca ricorsivamente Select(n/10) sull’insieme degli n/5 mediani per determinare m, il mediano dei mediani Partiziona gli n elementi nell’insieme A dei k elementi più piccoli di m, e B degli n-k elementi >=m Se i<=k, allora Select (A,i), altrimenti Select (B,i-k)
Analisi di Select(i) Osservazione: Gli insiemi A e B contengono almeno 3n/10 elementi. T(n)<=T(n/5)+T(7n/10)+dn Ipotesi: T(n)<=cn T(n)<=cn/5+7cn/10+dn = 9cn/10 + dn <=cn se c/10>=d
Esercizi Determinare la complessità di QuickSort se ad ogni passo il mediano degli elementi dell’array è selezionato come pivot con costo m(n) Determinare un lower bound sul costo della ricerca di un elemento in una collezione ordinata Si consideri la seguente equazione di ricorrenza Individuare un algoritmo di ordinamento la cui funzione di costo temporale è esprimibile tramite la F(n) definita. Determinare una delimitazione superiore per la funzione F(n)