algoritmi e strutture dati Dizionari Alberi binari di ricerca (BST)
maggio 2003ASD Dizionari Associa Informazioni a Chiavi Tre operazioni fondamentali: Insert(key) Remove(key) Search(key) Diverse implementazioni possibili
maggio 2003ASD Dizionari – Tipo di dato astratto public interface Dictionary_adt { void insert(Comparable key ); void remove(Comparable key ); Object search(Comparable key ) ; }
maggio 2003ASD concetto di chiave insieme di campi di un record che caratterizza l'intero record es.: {,,,, } il è una possibile chiave spesso in una struttura dati vengono memorizzate coppie (, ), in cui è un riferimento per l'accesso ad un insieme di informazioni
maggio 2003ASD chiavi in Java le chiavi sono spesso realizzate come riferimenti Comparable solo se occorre stabilire ordinamenti fra chiavi talvolta, a scopo esemplificativo, si usano come chiavi stringhe o interi facilita la descrizione di una struttura dati
maggio 2003ASD interface Comparable richiede metodo int compareTo(Object o) returns a negative integer, zero, or a positive integer as this object is less than, equal to, or greater than the specified Object o The implementor must ensure sgn(x.compareTo(y)) == -sgn(y.compareTo(x)) for all x and y. (This implies that x.compareTo(y) must throw an exception iff y.compareTo(x) throws an exception.) The implementor must also ensure that the relation is transitive: (x.compareTo(y)>0 && y.compareTo(z)>0) implies x.compareTo(z)>0 Finally, the implementer must ensure that x.compareTo(y)==0 implies that s gn(x.compareTo(z)) == sgn(y.compareTo(z)), for all z da: documentazione API JFC
maggio 2003ASD interface Comparable /2 It is strongly recommended, but not strictly required that (x.compareTo(y)==0) == (x.equals(y)). Generally speaking, any class that implements the Comparable interface and violates this condition should clearly indicate this fact. The recommended language is "Note: this class has a natural ordering that is inconsistent with equals" da: documentazione API JFC
maggio 2003ASD albero binario di ricerca albero binario che soddisfa la seguente proprietà per ogni nodo, tutte le chiavi nel suo sottoalbero sinistro sono della chiave v associata al nodo e tutti le chiavi nel suo sottoalbero destro sono di v
maggio 2003ASD albero binario di ricerca/ errato!ok
maggio 2003ASD albero binario di ricerca/3 indicato spesso come BST (binary search tree) utilizzabile quando le chiavi appartengono a un universo totalmente ordinato ipotesi semplificativa di lavoro: chiavi strettamente minori nei sottoalberi sinistri e strettamente maggiori nei sotto alberi destri
maggio 2003ASD rappresentazione dei nodi in molti casi può essere la stessa usata negli alberi binari (classe BinaryNode) in alternativa, la si può estendere per le variabili membro possiamo usare lo specificatore di accesso private o protected le conseguenze sono differenti
maggio 2003ASD rappresentazione collegata dei nodi/1 public class BSTNode { protected Comparable key; protected BSTNode leftChild; protected BSTNode rightChild; public BSTNode() { leftChild = rightChild = null; } public BSTNode(Comparable el) { this(el,null,null); }
maggio 2003ASD rappresentazione collegata dei nodi/2 protected BSTNode(Comparable el, BSTNode lt, BSTNode rt) { key = el; leftChild = lt; rightChild = rt; } public Comparable getKey() { return key; } public BSTNode getLeftChild() { return leftChild; } public BSTNode getRightChild() { return rightChild; } public void visit() {
maggio 2003ASD rappresentazione collegata dei nodi/3 System.out.print(key.toString()); } public boolean isLeaf() { return (leftChild == null) && (rightChild == null); }
maggio 2003ASD BST – Tipo di dato astratto public class BSTree implements Dictionary_adt { protected BSTNode root = null; protected int size = 0; /** * Creates an empty BSTree */ public BSTree(){ }
maggio 2003ASD elementi o nodi? il metodo che implementa loperazione search può restituire elementi ( Object ) o nodi ( BSTNode ) Object viene rafforzato lincapsulamento variabili membro protected BSTNode operazioni su sottoalberi variabili membro private e metodi accessori/modificatori il dilemma vale anche per altri metodi successor, delete (parametro formale), …
maggio 2003ASD ricerca in un BST public BSTNode search(BSTNode p, Comparable el) { if(p == null) return null; if(el.compareTo(p.key) == 0) return p; if (el.compareTo(p.key) < 0) return this.search(p.leftChild, el); else return this.search(p.rightChild, el); }
maggio 2003ASD ricerca in un BST/2 public BSTNode iterativeSearch(BSTNode p, Comparable el) { while (p != null) if (el.compareTo(p.key) == 0) return p; else if (el.compareTo(p.key) < 0) p = p.leftChild; else p = p.rightChild; return null; } in questo caso, la versione iterativa non richiede l'uso di una pila: perché?
maggio 2003ASD costo della ricerca in un BST BST di n nodi caso peggiore O(n) caso medio dipende dalla distribuzione caso migliore O(1) (poco interessante)
maggio 2003ASD costo della ricerca in un BST/2 nel caso di distribuzione uniforme delle chiavi il valore atteso dell'altezza dell'albero è O(lg n) N.B. L'altezza di un albero binario di n nodi varia in { lg 2 n + 1,…, n} un BST con chiavi uniformemente distribuite ha un costo atteso di ricerca O(lg n)
maggio 2003ASD analisi del caso medio IPL (internal path length): somma lungh. percorsi radice-nodo, per tutti i nodi lungh. media percorso radice-nodo: IPL/(#nodi)
maggio 2003ASD analisi del caso medio/2 supp. chiavi 1,…,n presenti in un BST di n nodi (senza perdita di generalità) P n (i) : lungh. percorso medio in BST di n nodi avente chiave i in radice (IPL/#nodi) P n : percorso medio in BST di n nodi (IPL/#nodi) se k(radice) = i allora –sottoalbero sx ha i – 1 chiavi –sottoalbero dx ha n – i chiavi
maggio 2003ASD ricerca predecessore in BST data una chiave a, trovare la chiave b = pred(a), ovvero la più grande fra le chiavi < a operazione sfruttata nell'algoritmo di eliminazione dove si trova b rispetto a? se esiste sottoalbero sinistro si trova in tale sottoalbero se non esiste sottoalbero sinistro si trova sul percorso radice – nodo contenente a
maggio 2003ASD ricerca predecessore in BST /2 Esiste un sottoalbero sinistro di u. cerchiamo pred(k(u)) nel sottoalbero di radice u non può essere nel sottoalbero del figlio destro (chiavi > k(u)) il max nel sottoalbero del figlio sinistro è un candidato si tratta del "nodo più a destra", individuabile scendendo sempre a destra in tale sottoalbero, fino a trovare un nodo senza figlio destro u v w non qui x
maggio 2003ASD ricerca predecessore in BST /3 Non esiste un sottoalbero sinistro di u cerchiamo pred(k(u)) sul cammino verso la radice non può essere fuori dal percorso radice – u (per le proprietà del BST) E il primo nodo con chiave minore di u che si incontra sul cammino verso la radice u v
maggio 2003ASD ricerca predecessore in BST /4 public BSTNode predecessor(BSTNode p, Comparable el) { BSTNode pred = null; while(p != null) if(el.compareTo(p.key) <= 0) p = p.leftChild; else { pred = p; p = p.rightChild; } return pred; }
maggio 2003ASD ricerca predecessore in BST /5 costo ricerca predecessore proporzionale all'altezza dell'albero nel caso peggiore O(n) la ricerca del successore si realizza in modo analogo e simmetrico. costo O(n)
maggio 2003ASD inserimento in un BST nuovo nodo u viene inserito come foglia fase 1: cerca il nodo genitore v fase 2: inserisci u come figlio di v
maggio 2003ASD inserimento in un BST/2 public void insert(BSTNode node) { BSTNode p = root, prev = null; Comparable el = node.getKey(); while (p != null) { // find a place for insert new node; prev = p; if (p.key.compareTo(el) < 0) p = p.rightChild; else p = p.leftChild; }
maggio 2003ASD inserimento in un BST/3 if (root == null) // tree is empty; root = node; else if (prev.key.compareTo(el) < 0){ prev.rightChild = node; } else { prev.leftChild = node; } this.size++; }
maggio 2003ASD inserimento in un BST/3 la fase 1 termina quando si raggiunge un nodo del BST privo del figlio in cui avrebbe avuto senso continuare la ricerca non necessariamente una foglia è il nodo inserito che diviene foglia la fase 2 si limita a collegare una nuova foglia
maggio 2003ASD inserimento in un BST/4 caso peggiore costo fase 1: O(n ) costo fase 2: O(1) costo totale: O(n ) caso medio (distrib. unif.) costo fase 1: O(lg n ) costo fase 2: O(1) costo totale: O(lg n )
maggio 2003ASD costo dell'inserimento in un BST ogni inserimento introduce una nuova foglia il costo è (proporzionale a) la lunghezza del ramo radice-foglia interessato all'operazione nel caso peggiore: O(n)
maggio 2003ASD cancellazione da un BST tre casi 1. cancellazione di una foglia 2. cancellazione di un nodo con un solo figlio 3. cancellazione di un nodo con due figli
maggio 2003ASD cancellazione da un BST/2 1. cancellazione di una foglia individuare nodo genitore e metterne a null la variabile membro opportuna ( leftChild o rightChild ); se foglia = radice (unico nodo) mettere a null il riferimento alla radice individuare genitore significa effettuare una ricerca (come nella fase 1 dell'inserimento) un approccio alternativo è basato sulla tramatura dell'albero (i nodi contengono altri riferimenti, ad es., al genitore)
maggio 2003ASD cancellazione da un BST/3 cancellazione di
maggio 2003ASD cancellazione da un BST/4 2. cancellazione di un nodo u con un solo figlio v individuare genitore w di u; se u è radice v diviene la nuova radice se esiste w, sostituire al collegamento (w,u) il collegamento (w,v) w u v w u v w u v u v w
maggio 2003ASD cancellazione da un BST/5 cancellazione di
maggio 2003ASD cancellazione da un BST/6 3. cancellazione di un nodo u con due figli (ci si riconduce ad uno dei casi precedenti) individuare predecessore v (o successore) di u v non può avere due figli, altrimenti non sarebbe predecessore (successore) copiare la chiave di v al posto di quella di u cancellare nodo v v è foglia oppure ha un solo figlio: caso già trattato
maggio 2003ASD cancellazione da un BST/7 u v u v copia chiave w w w u u w cancella v v
maggio 2003ASD cancellazione da un BST/8 public Comparable remove(Comparable el) { BSTNode p = root; BSTNode parent = null; while(p != null){ if(el.compareTo(p.key) > 0) parent = p; p = p.rightChild; } else if(el.compareTo(p.key) < 0) { parent = p; p = p.leftChild; } else break; if(p == null) return; // el not in tree
maggio 2003ASD cancellazione da un BST/9 // 1st case: p is leaf if(p.isLeaf()) if(parent == null) // p is root, too root = null; else if(parent.rightChild == p) // p is rightChild parent.rightChild = null; else// p is leftChild parent.leftChild = null;
maggio 2003ASD cancellazione da un BST/10 // 2nd case: p has one child else if(p.leftChild == null) // p has only a rightChild if(parent == null) // p is root, too root = p.rightChild; else if(parent.rightChild == p) // p is rightChild parent.rightChild = p.rightChild; else// p is leftChild parent.leftChild = p.rightChild;
maggio 2003ASD cancellazione da un BST/11 else if(p.rightChild == null) // p has only a leftChild if(parent == null) // p is root, too root = p.leftChild; else if(parent.rightChild == p) // p is rightChild parent.rightChild = p.leftChild; else// p is leftChild parent.leftChild = p.leftChild;
maggio 2003ASD cancellazione da un BST/12 // 3rd case: p has 2 children (then it has a predecessor!) else {Comparable pred = this.predecessor(p.leftChild, p.key).key; this.remove(pred); // removing node doesn't have two children! p.key = pred; } size--; }
maggio 2003ASD u costo della cancellazione in un BST la cancellazione di un nodo interno richiede l'individuazione del nodo da cancellare nonché del suo predecessore (o successore) nel caso peggiore entrambi i costi sono lineari: O(n) + O(n) = O(n) n/2 da cancellare predecessore v