PROGETTO INNOVADIDATTICA

Slides:



Advertisements
Presentazioni simili
Cosa sono? Come si risolvono?
Advertisements

Equazioni e calcoli chimici
PROGETTO LAUREE SCIENTIFICHE
"Il Problema non è un...PROBLEMA"
I sistemi di equazioni di I grado
Equazioni differenziali
I SISTEMI LINEARI.
x+x=2x Consideriamo la seguente frase:
Equazioni di primo grado
LE EQUAZIONI DI SECONDO GRADO
Equazioni di primo grado
MATEMATICA PER L’ECONOMIA
CONTENUTI della I° parte
MATEMATICA PER L’ECONOMIA
Meccanica 2 1 marzo 2011 Cinematica in una dimensione
… ancora problemi! Si definisce problema una situazione in cui vengono fornite delle informazioni e ne vengono richieste altre: Le informazioni fornite.
Il problema del … problema! Si definisce problema una situazione in cui vengono fornite delle informazioni e ne vengono richieste altre: Le informazioni.
Identità È un’uguaglianza valida per qualsiasi valore attribuito alla x 2x + x = 3x se x =5 2*5 +5 =3* = 15 se x=8 2*8 + 8 =3*8 16.
= 2x – 3 x Definizione e caratteristiche
Definizione e caratteristiche
(se a = 0 l’equazione bx + c = 0 è di primo grado)
Esempio : 2x+5=11-x è un’uguaglianza vera se x è uguale a 2.
PROBLEMI DI PRIMO GRADO
Elementi di Matematica
LE EQUAZIONI.
EQUAZIONI.
"I SISTEMI LINEARI COME MODELLO DI PROBLEMI"
Fase 1 e 2 Lezione 1 Lezione 2 Lezione 3 Lezione 4.
EQUAZIONI DI PRIMO GRADO AD UNA INCOGNITA
Dal linguaggio naturale al linguaggio dell’algebra.
Liceo Scientifico "A.Volta" Reggio Calabria
La forma normale di un’equazione di secondo grado è la seguente:
I Sistemi Lineari Molti, problemi per poter essere risolti, hanno bisogno dell’introduzione di uno o più elementi incogniti. Ad esempio consideriamo il.
A cura di Concetta ed Emanuela Richichi dellIPSIA Enrico Medi di Palermo.
INTRODUZIONE Tutti i ragazzi imparano meglio le cose che per loro sono divertenti. Il metodo e i materiali adatti allo studio devono essere agganciati,
1° grado e loro rappresentazione
PROPORZIONI.
Docente : Grazia Cotroni
TEORIA EQUAZIONI.
ALGEBRA algebrizzare problemi
Le scale di proporzione
Lezione multimediale a cura della prof.ssa Maria Sinagra
EQUAZIONI DI SECONDO GRADO
Progetto competenze asse matematico.
La scomposizione di un polinomio in fattori
a b c d 1 - CHIAMIAMO SIMILI: due figure che si assomigliano
Le equazioni di primo grado
EQUAZIONI DI PRIMO GRADO
Equazioni di primo grado
LE EQUAZIONI DI PRIMO GRADO
Le equazioni x2 − 4 = 0 1 x = x0 + v • t + a • t2 2
Equazioni e disequazioni
UGUAGLIANZE NUMERICHE
LE EQUAZIONI DI PRIMO GRADO
Equazioni.
Equazioni e disequazioni
Il calcolo con le frazioni
EQUAZIONI di primo grado numeriche intere con una incognita.
4 < 12 5 > −3 a < b a > b a ≤ b a ≥ b
Equazioni di 1° grado.
Frazioni e problemi.
L E EQUAZIONI. “Trova un numero tale che il suo doppio sommato con il numero stesso sia uguale al suo triplo”… Trova un numerox tale che  il suo doppio2x.
Sistemi di equazioni lineari. Sistemi di primo grado di due equazioni a due incognite Risolvere un sistema significa trovare la coppia di valori x e y.
Equazioni Che cosa sono e come si risolvono. Osserva le seguenti uguaglianze: Equazioni Che cosa sono Queste uguaglianze sono «indeterminate», ovvero.
Equazioni algebriche sul campo dei numeri reali. Generalità.
INTRODUZIONE Il progetto è rivolto ad alunni che frequentano il biennio del Liceo Scientifico, gli argomenti affrontati sono di notevole importanza per.
Raccogliamo x al primo membro e 2 al secondo:
Ancora sulle equazioni di secondo grado….. Equazione di secondo grado completa Relazione tra le soluzioni di un'equazione di secondo grado.
Rapporti e proporzioni
EQUAZIONI Di primo grado ad una incognita Prof. Valletti.
Transcript della presentazione:

PROGETTO INNOVADIDATTICA RISOLUZIONE DI PROBLEMI CON L’USO DELLE EQUAZIONI DI PRIMO GRADO MATERIA: MATEMATICA PROF.SSA PIRCHIO CARMELINA

INDIVIDUAZIONE ARGOMENTO Perché saper risolvere le equazioni? Perché le equazioni servono a risolvere dei problemi! Di fronte ad un problema, la formalizzazione matematica ha un ruolo unificatore. Mettendo << un problema in equazione >> ci si sbarazza del contesto e ci si ritrova nel mondo rassicurante della matematica, dove le regole, se conosciute, ci guidano verso la soluzione.

Cos’è una equazione? verificata solo per particolari valori attribuiti all’incognita UGUAGLIANZA TRA DUE ESPRESSIONI contenenti una incognita: 5x + 4 = 2x + 7 x2 – 5x – 6 = 0 2x + 1 = 0

Riguardo alla risoluzione di una equazione basta ricordare che per quanto possa apparire complessa, attraverso corrette trasformazioni (sfruttando le conoscenze del calcolo algebrico e i due principi di equivalenza) si arriva,con una serie di passaggi tra equazioni equivalenti, alla FORMA NORMALE ax = b da cui x = b/a

Lo schema di ragionamento da seguire per risolvere un qualsiasi problema si articola in diverse fasi: 1) Analisi del testo e scelta dell’incognita Attraverso la lettura e l’analisi accurata del testo di un problema, si individua la grandezza che può essere considerata come incognita. 2) Traduzione del problema in equazione Si traduce l’enunciato del problema nel linguaggio algebrico, cioè si esprime con una equazione il legame fra l’incognita e i dati. 4)Risoluzione dell’equazione Si risolve l’equazione trovata con le tecniche matematiche conosciute. 5)Discussione della soluzione Si verifica se la soluzione ottenuta soddisfi le condizioni del problema e quindi sia accettabile. Ad esempio ● un numero intero positivo, se indica persone o animali , ● un numero positivo, se indica la misura del perimetro o l’area di una figura piana...

ESEMPI DI RISOLUZIONE ► In un rettangolo, la base è il triplo dell’altezza e la loro differenza è di 28 cm; calcolare la misura della base. Analisi del testo e scelta dell’incognita Sappiamo che: AB = 3AD AB – AD = 28 (in cm) se dunque indichiamo con x l’altezza AD, possiamo esprimere la base AB con 3x. Traduzione del problema in equazione 3x – x = 28 ↓ ↓ ↓ base altezza differenza fra base e altezza Risoluzione dell’equazione 3x – x = 28 cioè: 2x = 28 e quindi: x =28/2 semplificando: x = 14 Discussione dell’equazione La soluzione x = 14 è accettabile, perché la misura di un segmento deve essere un numero positivo.

► In una città europea è stata registrata la temperatura alle ore 8 ► In una città europea è stata registrata la temperatura alle ore 8.00 e alle ore 12.00. Si sa che la somma delle due temperature è di 7 gradi e che la temperatura delle ore 12.00 supera quella delle ore 8.00 di 9 gradi. Qual era la temperatura di quella località alle ore 8.00? Analisi del testo e scelta dell’incognita Sappiamo che alle ore 12.00 la temperatura, rispetto alle ore 8.00, è aumentata di 9 gradi e che la somma delle due temperature è di 7 gradi. Se indichiamo con x la temperatura alle ore 8.00, possiamo esprimere con x + 9 la temperatura alle ore 12.00. Traduzione del problema in equazione x + (x + 9) = 7 ↓ ↓ ↓ temperatura temperatura somma delle alle ore 8.00 alle ore 12.00 temperature Risoluzione dell’equazione x + ( x +9) = 7 x + x +9 = 7 2x = 7− 9 2x = − 2 x = − 2/2 quindi x = −1 Discussione della soluzione La soluzione x = −1 è accettabile, perché la temperatura di una data località può essere un numero positivo o negativo.

►La stessa quantità di birra che si trova in 36 bottigliette da 1/2 litro ciascuna è contenuta anche in 24 caraffe. Determinare la capacità di ciascuna caraffa. Analisi del testo e scelta dell’incognita Sappiamo che i litri di birra contenuti nelle bottigliette sono tanti quanti quelli versati nelle caraffe. Poiché ci viene chiesto di determinare la capacità delle caraffe, indichiamo quest’ultima con x. .Traduzione del problema in equazione 24 ∙ x = 36 ∙ 1/2 ↓ ↓ litri contenuti litri contenuti nelle caraffe nelle bottiglie Risoluzione dell’equazione 24 x = 36 . ½ 24 x = 18 x = 18/24 da cui x =3/4 Discussione della soluzione La soluzione x = 3/4 è accettabile, perché la capacità delle caraffe può essere espressa con un numero intero o frazionario.

►Un problema di Eulero <<Un padre ha tre figli e lascia in eredità 1.600 corone. Il testamento precisa che il maggiore deve ricevere 200 corone più del secondo e il secondo 100 corone più dell’ultimo. Qual è la somma ereditata da ciascun figlio?>> Scelta dell’incognita In questo problema le incognite sono apparentemente tre, ma se indichiamo con x una delle tre parti possiamo esprimere le altre in funzione della x. Quindi sia x (in corone) la parte di eredità del figlio maggiore. La parte del secondo è x – 200, quella del terzo (x – 200) – 100 = x – 300. Traduzione del problema in equazione x + ( x – 200) + ( x – 300) = 1600 ↓ ↓ ↓ ↓ eredità del eredità del eredità del eredità 1° figlio 2° figlio 3° figlio complessiva Risoluzione dell’equazione x + (x – 200) + (x – 300) = 1600 x + x − 200 + x – 300 = 1600 3x – 500 = 1600 3x = 1600 + 500 3x =2100 x = 2100/3 da cui segue che x = 700 Discussione della soluzione La soluzione x è positiva, e quindi accettabile. Il primo figlio eredita 700 corone, il secondo 500 e l’ultimo 400. La corona è il nome di antiche monete d’oro e d’argento ed attuale unità monetaria di Islanda, Svezia, Danimarca, Norvegia e di altri Paesi Baltici.

►Un mattone pesa 1 kg più mezzo mattone; Quanto pesa il mattone? Invece di procedere per tentativi, possiamo risolvere facilmente l’indovinello in questo modo. Analisi del testo e scelta dell’incognita Indichiamo con l’incognita x il peso, in kg, del mattone. Traduzione del problema in equazione x = 1 + 1/2 x peso del mattone 1 Kg peso del mezzo mattone Risoluzione dell’equazione x = 1+ 1/2x 2x = 2 + x 2x – x = 2 x = 2 Discussione della soluzione La soluzione x è positiva, trattandosi di un peso risulta accettabile.

► Un televisore, dopo che è stato praticato uno sconto del 12% sul prezzo originario, è stato pagato 308 euro. Qual era il prezzo originario? Analisi del testo e scelta dell’incognita Poiché lo sconto subito dal prezzo del televisore è il 12% ed il prezzo scontato è uguale a 308 euro, indichiamo con l’incognita x il prezzo originario del televisore Traduzione del problema in equazione x − 12/100 ∙ x = 308 ↓ ↓ ↓ ↓ il prezzo meno il 12% del prezzo è uguale prezzo originario originario al originario ossia: x – 3/25 x = 308 osserva che 12/ 100 = 3/ 25 Risoluzione dell’equazione x – 3/25 x = 308 25 x – 3 x = 308 ∙ 25 moltiplicando entrambi i membri per 25 22 x = 7700 x = 7700/22 = 350 Discussione della soluzione La soluzione trovata è accettabile infatti è positiva ed è maggiore di 308.

►Si vuole formare la somma di 5 euro con 40 monete, alcune da 20 centesimi e altre da 50 centesimi. Quantemonete da 20 e quante da 50 centesimi sono necessarie? Analisi del testo e scelta dell’incognita Abbiamo a disposizione monete da 20 e 50 centesimi; e possiamo utilizzare complessivamente 40 monete per ottenere una somma pari a 5 euro. Indichiamo con x il numero di monete da 20 centesiminecessarie: così resta automaticamente determinato,in funzione di x, il numero di monete da 50 centesimi, che sarà uguale a 40 – x, dal momento che si vogliono usare in tutto 40 monete. Traduzione del problema in equazione e relativa risoluzione 20/100 x + 50/100(40 – x) = 5 semplificando segue 1/5 x + 1/2(40 – x) = 5 moltiplicando i due membri dell’equazione per 10 si ha 2 x + 5(40 − x ) = 50 2 x + 200 – 5 x = 50 −3 x = −150 cambiando di segno (conseguenza 2° princ.equivalenza) 3 x = 150 x = 150/ 3 = 50 Discussione della soluzione La soluzione trovata è un numero naturale, ma non soddisfa la condizione di essere minore o uguale di 40 (si potevano usare al massimo 40 monete) perciò non è accettabile. Dobbiamo concludere che è impossibile formare la somma di 5 euro utilizzando 40 monete, alcune da 20 e altre da 50 centesimi.

►Un bastone è infisso nel suolo per 1/3 della sua lunghezza ed emerge per 84cm. Quanto è lungo il bastone? Nell’antichità, questo problema veniva risolto ragionando più o meno così:<< Attribuiamo al bastone una lunghezza qualsiasi: se, per esempio, il bastone fosse lungo 120 cm, la parte emergente sarebbe di 80 cm. Ma allora la misura del bastone ( x ) sta alla parte che emerge ( 84 ) come 120 sta a 80. Cioè ( con scrittura moderna): x : 84 = 120 : 80 → x = 126 IL bastone è lungo 126 cm>>. Questo metodo , detto della falsa posizione perché basato sulla falsa supposizione che il bastone fosse lungo 120 cm, aveva il difetto di poter essere applicabile solo a casi molto semplici. Oggi l’algebra ci consente un approccio più generale. Come più volte visto nei problemi presi in esame precedentemente, se indichiamo con x la misura del bastone, possiamo così tradurre l’enunciato del problema: x − 1/3 x = 84 misura del misura della misura della bastone parte infissa parte che emerge Questa è un’ equazione, ossia un’uguaglianza che contiene << quantità date >> e << quantità incognite >> che, come in tutti gli altri problemi illustrati in questa unità, abbiamo cercato di individuare e di determinare. x − 1/3 x = 84 moltiplicando per 3 tutti i termini 3x − x = 252 2x = 252 dividendo per 2 x = 126

► Un’auto, su un’autostrada, parte da un casello A verso il casello B che dista 200 km da A; dopo 20 minuti, dal casello B parte una seconda auto che si muove in verso opposto al precedente ( cioè verso il casello A ). Le due auto viaggiano a una velocità che si può considerare mediamente costante e uguale a 110 km all’ora per la prima auto e 90 km all’ora per la seconda. Dopo quanto tempo dalla sua partenza la prima auto incontrerà la seconda? Analisi del testo e scelta dell’incognita L’auto che parte da A viaggia a 110 km all’ora L’auto che parte da B viaggia a 90 km all’ora e parte dopo 20 minuti La distanza tra i caselli A e B è di 200 km Indichiamo con t il tempo incognito (espresso in ore) trascorso dal momento in cui l’auto A parte all’istante in cui le auto si incontrano. L’auto B parte dopo 20 minuti cioè dopo un terzo di ora. Si incontreranno quando l’auto A avrà percorso uno spazio = 110 km/h ∙ t ; l’auto B avrà percorso uno spazio = 90 km/h ∙ (t – 1/3) e la somma degli spazi percorsi sarà uguale alla distanza dei due caselli pari a 200 km. Trasformazione del problema in equazione, risoluzione e discussione. 110 ∙ t + 90 ( t – 1/3) = 200 110 ∙ t + 90 ∙ t – 30 = 200 200 ∙ t = 230 t = 230/200 = 23/ 20 la soluzione è accettabile poiché, avendo misurato il tempo in ore, le auto si incontreranno dopo un tempo uguale a: 23/20 ∙ 60 minuti = 69 minuti ossia dopo 1 ora e 9 minuti.

Possiamo concludere che riguardo alla risoluzione di un problema relativo a numeri o a relazioni astratte tra quantità, è necessario solo tradurre il problema dal proprio linguaggio al linguaggio dell’algebra. Una equazione è uno strumento algebrico per risolvere (una classe di) problemi, le incognite sono le risposte che si cercano e poiché ancora non si conoscono, le indichiamo con delle lettere ( incognite).