1 Lezione 18 Identificazione di particelle Lidentificazione di particelle è un aspetto importante negli esperimenti di fisica delle alte energie. Alcune.

Slides:



Advertisements
Presentazioni simili
Lezione 7 Effetto Cerenkov
Advertisements

Identificazione di particelle

Misure di impulso di particelle cariche
nelle situazioni seguenti:
Tecniche analitiche per lo studio dei materiali coloranti.
Riassunto Lezione 1.
Esercizio 1 Un guscio sferico isolante di raggio R=0.1 m e spessore trascurabile, porta una carica positiva Q=1mC distribuita uniformemente sulla superficie.
NASCITA DELLA RELATIVITA’ RISTRETTA
Deflessione della luce per effetto di grandi campi gravitazionali terra Raggio diretto:invisibile:incontra massa deviante Raggio reale invisibile Stella.
7/10/2008Paolo Checchia riunione CMS Pd1 CMS Esperimento a LHC la macchina pp a più alta energia mai costruita al mondo: 7 TeV + 7 TeV (si inizia a 5+5)
Istituzioni di Fisica Subnucleare A
Principi fisici di conversione avanzata (Energetica L.S.)
Algoritmi Paralleli e Distribuiti a.a. 2008/09 Lezione del 29/05/2009 Prof. ssa ROSSELLA PETRESCHI a cura del Dott. SAVERIO CAMINITI.
Quantità di moto relativistica
Instabilità nucleare.
Elisa Fioravanti 15 Ottobre 2007 Università di Ferrara 1/50 STUDIO DEL PROCESSO pp Y(4260) J/ + l + l - + CON LESPERIMENTO PANDA Al FAIR/GSI.
Potenziali termodinamici
Cinematica relativistica
Il lavoro [L]=[F][L]=[ML-2T -2] S.I.: 1 Joule = 1 m2 kg s-2
Silvia Arcelli 1 Metodi di Ricostruzione in fisica Subnucleare Corso di Metodologie Informatiche Per la Fisica Nucleare e Subnucleare A.A. 2009/2010 I.
Particelle cariche Perdita energia Deflessione Fenomeni principali:
DELPHI 12 anni di presa dati alla Z 0 (LEP I) e fino alla massima energia (LEP II) mai raggiunta da una macchina e + e - : 209 GeV Misura del numero di.
Lezione 4 Cenni di relatività speciale: trasformazioni di Lorentz, invarianti di Lorentz, variabili di Mandelstam, relazioni fondamentali: massa, impulso,
Corso di Istituzioni di Fisica Nucleare e Subnucleare I
SPETTROSCOPIA COERENTE.
Urti Si parla di urti quando due punti materiali (o due sistemi di punti materiali) interagiscono per un intervallo di tempo estremamente breve. si possono.
Lezione 5… Interazione delle particelle con la materia
Lezione 15 Rivelatori a stato solido
Lezione 10 Misure d’impulso
Rivelatori di Particelle1 Lezione 23 LHCb Introduzione Motivazione fisica: Studiare la fisica del B con particolare riguardo alla violazione di CP ed alla.
Lezione 8 Perdita di energia di e±
Raggio classico dell’elettrone
CPE nella misura dell’esposizione
2/3/20141 Laboratorio di Fisica I Esperienze Dipartimento di Fisica Anno Accademico 2002/2003.
Università di Roma “La Sapienza”
Fisica delle particelle elementari
DETECTOR PER RAGGI X CONTATORI INTEGRATORI Scelta Tipo di misura
Programma del Corso di Istituzioni di Fisica Nucleare e Subnucleare
1 Lezione 7 Cenni di spettroscopia Elementi fondamentali di uno spettroscopio Tipi fondamentali di analizzatore Due esempi di spettrometro.
1 ESERCIZIO Quali di questi processi non possono avvenire tramite interazione forte? Perchè? RISOLUZIONE Ricordiamo i numeri quantici dei Kaoni e del protone.
Lezione 8 Esperimento di Thomson per la determinazione del rapporto carica/massa dell’elettrone: quattro possibili tecniche.
Corso di Laurea in Ingegneria Aerospaziale A. A
Le camere a bolle Cos’è un rivelatore di particelle ?
MATERIA ANTIMATERIA e Marco Napolitano
Scattering in Meccanica Classica
Lezione 7 Effetto Compton.
Rivelazione e misura di mesoni 0 con il rivelatore ICARUS T600 A. Menegolli – Collaborazione ICARUS A. Menegolli – Collaborazione ICARUS Università degli.
1 Violazione di CP nei B Interpretazione del modello a quark: (b = +1) (b =  1) Perche’ e’ importante?  settore dei B molto piu’ ricco dei K  con effetti.
Michelangelo Mangano Theoretical Physics Division CERN, Geneva PERCHE’ STUDIAMO LA FISICA DELLE PARTICELLE? Incontri LNF per gli insegnanti 2002.
I Padri della Teoria Cinetica
Qual è la soglia di precisione? Due esperimenti: 1-Massa costante (1 mm di inc.) 2- Grandezza Costante (30 g di inc.) 16 Soggetti Transizioni testate:
Fisica delle particelle elementari
Principi fisici di conversione avanzata (Energetica L.S.)
Proprietà generali dei rivelatori
Misure esclusive ed inclusive di |V cb | nei decadimenti semileptonici dei mesoni B Diego Monorchio Università “Federico II” di Napoli e INFN Incontri.
TECNICHE DI RIVELAZIONE DIRETTA : STATO ATTUALE: Riassumo: si aspetta che le WIMP abbiano massa nel range GeV-TeV ; p= poche decine di MeV ed un’energia.
FORZE CONSERVATIVE E DISSIPATIVE
SCHEDA INFORMATIVA DI UNITÀ. Introduzione Esigenze di memoria per un sistema di calcolo –Dati –Istruzioni Obiettivi –Raggiungere i migliori compromessi.
Massa ed energia relativistica
Spettrometria di massa
Raffreddamento laser ed intrappolamento di atomi e molecole
Determinazione della velocità media dei muoni dai raggi cosmici
1 Lezione XIII – terza parte Avviare la presentazione col tasto “Invio”
2. La relatività ristretta
2. Il Modello Standard del Microcosmo Ricerca del Bosone di Higgs a LHC Pergola Aprile Il Modello Standard (SM) è descritto nelle 3 diapositive.
DPG 2011 dE/dx’ per muoni v≈0.96 c η=βγ ≈ 3.6 Indip dalla massa dE/dx’ ≈ 1.5 MeV δ correction Perdita radiativa NON presente per M(part) > M(muone)
I raggi cosmici sono particelle subatomiche, frammenti di atomi, che provengono dallo spazio.
ESPERIMENTO MOLTO COMPLESSO Pierluigi Paolucci - Liceo Mercalli
Transcript della presentazione:

1 Lezione 18 Identificazione di particelle Lidentificazione di particelle è un aspetto importante negli esperimenti di fisica delle alte energie. Alcune importanti quantità fisiche sono accessibili soltanto con una sofisticata identificazione del tipo di particella: fisica del B, violazione di CP, decadimenti esclusivi e rari. Generalmente si vuole discriminare: /K, K/p, e/, / 0 ….. Il metodo di identificazione usato dipende fortemente dalle energie implicate. A seconda del particolare processo di fisica sotto studio bisogna ottimizzare o lefficienza o la mis-identificazione:

2 Lezione 18 Identificazione di particelle DELPHI Why particle ID ? 1 K + 2 in final state Un decadimento del B

3 Lezione 18 Identificazione di particelle Who is who ? RICH: contatori Cerenkov (misura di ) dE/dx : misura di

4 Lezione 18 Identificazione di particelle Per identificare una particella carica (massa e carica) dobbiamo usare 2 diversi dispositivi, in quanto dobbiamo determinare 2 quantità. Limpulso della particella è, in generale, determinato dalla deflessione della particella in un campo magnetico. Noto limpulso e la carica devo eseguire unaltra misura per determinare la massa.

5 Lezione 18 Identificazione di particelle Metodi: Tempo di volo dE/dx Radiazione di transizione Čerenkov p p

6 Lezione 18 Identificazione di particelle Tempo di volo (TOF). Necessaria unottima risoluzione temporale ( 300ps sono facilmente raggiungibili con dei contatori a scintillazione). Se 2 particelle di massa m 1 ed m 2 hanno lo stesso impulso e percorrono la stessa distanza L la differenza di tempo t 1 -t 2 = t sarà : Si sono assunte particelle relativistiche ( E~pc ovvero mc 2 <<pc) e si è sviluppato in serie fermandosi al primo ordine. startstop

7 Lezione 18 Identificazione di particelle usando scala logaritmica: t for L = 1 m di lunghezza di traccia t = 300 ps /K separation up to 1 GeV/c (1 ) con L=3m e separazione di 4 separazione /k fino a 1 GeV/c. ( t = 300 ps)

8 Lezione 18 Identificazione di particelle Esempio: CERN NA49 (Ioni Pesanti) detail of the grid Small, but thick scint. 8 x 3.3 x 2.3 cm Long scint. (48 or 130 cm), read out on both sides TOF requires fast detectors (plastic scintillator, gaseous detectors), approporiate signal processing (constant fraction discrimination), corrections + continuous stability monitoring.

9 Lezione 18 Identificazione di particelle T rel. = T / T L = 15 m System resolution of the tile stack From conversion in scintillators CERN NA49 (Ioni Pesanti)

10 Lezione 18 Identificazione di particelle CERN NA49 (Ioni Pesanti) Ma NA49 ha anche delle TPC identificazione di particelle anche con dE/dx NA49 combined particle ID: TOF + dE/dx (TPC)

11 Lezione 18 Identificazione di particelle dE/dx Con misure simultanee di p e dE/dx trovo la massa della particella e quindi identifico il tipo di particella. Average energy loss for e,,,K,p in 80/20 Ar/CH 4 (NTP) (J.N. Marx, Physics today, Oct.78) /K separation (2 ) requires a dE/dx resolution of < 5% e p K p K p K Grosse fluttuazioni+ code di Landau La misura si esegue in un gas per ridurre leffetto densità.

12 Lezione 18 Identificazione di particelle (B. Adeva et al., NIM A 290 (1990) 115) 1 wire 4 wires L: most likely energy loss A: average energy loss (M. Aderholz, NIM A 118 (1974), 419) Dont cut the track into too many slices ! There is an optimum for each total detector length L. Chose gas with high specific ionization Divide detector length L in N gaps of thickness T. Sample dE/dx N times calcolare media troncata,cioè ignora i campioni con conteggi troppo elevati (e.g. 40%) aumentare la pressione del gas,ma attenzione effetto densità.

13 Lezione 18 Identificazione di particelle Esempio : TPC di ALEPH Gas: Ar/CH 4 90/10 N punti =338, spaziatura dei fili 4mm Risoluzione di dE/dx: 4.5% per i Bhabha, 5% per i MIP. log scale !

14 Lezione 18 Identificazione di particelle dE/dx puo anche essere misurato con apparati al silicio Esempio: Microvertice di DELPHI (4x300 m di silici)

15 Lezione 18 Identificazione di particelle

16 Lezione 18 Identificazione di particelle Conteggio dei cluster Vantaggio: i cluster fluttuano alla Poisson

17 Lezione 18 Contatori a radiazione di transizione (TRD) Ricordiamo: Energia irraggiata per ogni superficie di separazione medium/vacuum Numero di fotoni emessi per superficie di separazione è piccolo Servono molte superfici di separazione costruire una pila di fogli separati da un sottile strato di aria I raggi X sono emessi con un massimo a piccoli angoli 1/ la radiazione sta vicino alla traccia

18 Lezione 18 Contatori a radiazione di transizione (TRD) Spettro di emissione della radiazione Energia tipica Fotoni di alcuni KeV Spettro di emissione (simulato) di un foglio di CH 2 (Dai 3 ai 30 KeV)

19 Lezione 18 Contatori a radiazione di transizione (TRD) Contatori a radiazione di transizione Radiatore: Radiatore: il meglio è il Litio, ma fortemente igroscopico Gruppi di fogli di CH 2 sono i preferiti (basso costo, sicuri, facili da fare) Materiale a basso Z piccolo riassorbimento ( Z 5 ) R D R D R D sandwich of radiator stacks and detectors minimize re-absorption

20 Lezione 18 Contatori a radiazione di transizione (TRD) zona di formazione Neff Parte della radiazione è riassorbita il numero di fogli è limitato basso Z minore riassorbimento. (fogli di litio o berillio) Spessore dei fogli di CH 2 ~20 m (zona di formazione). Le gap di aria devono essere ~ 1mm. Se i fogli e le gap sono << della lunghezza di formazione segnale fortemente diminuito per effetti di interferenza

21 Lezione 18 Contatori a radiazione di transizione (TRD)

22 Lezione 18 Contatori a radiazione di transizione (TRD) Detector Detector

23 Lezione 18 Contatori a radiazione di transizione (TRD)

24 Lezione 18 Contatori a radiazione di transizione (TRD) Una possibile geometria (schematica) Possibili 2 modi di lettura: Metodo della carica. Si integra tutta la carica raccolta per TR e dE/dx ( al di sopra di una certa soglia). Si applicano dei tagli per le particelle con solo dE/dx. limitato dalle code di Landau.( metodo principalmente usato ) Conteggio dei cluster. Si identificano i singoli cluster di ionizzazione primaria. Si contano i cluster al di sopra di una certa soglia. Minor fondo (il numero di cluster è distribuito alla Poisson), ma serve elettronica veloce e geometria speciale delle camere

25 Lezione 18 Contatori a radiazione di transizione (TRD) ATLAS Transition Radiation Tracker A prototype endcap wheel. X-ray detector: straw tubes (4mm) (in total ca !) Xe based gas

26 Lezione 18 Contatori a radiazione di transizione (TRD) TRT protoype performance Pion fake rate at 90% electron detection efficiency: 90 = 1.58 %