Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 I Transistori I transistor sono dispositivi con tre terminali sviluppati dal 1948. I tre terminali.

Slides:



Advertisements
Presentazioni simili
prof. Pietro Gamba - IIS C. PESENTI - BG
Advertisements

Storia dell'A.O. Introduzione A.O. Invertente A.O. non invertente
Storia dell'A.O. Introduzione A.O. Invertente A.O. non invertente esci
Cenni sugli amplificatori
DA MARCONI AI NOSTRI GIORNI
COMPONENTI ELETTRONICI
Stages Estivi 2013 corso di simulazione elettronica con Spice
Segnali e Sistemi Un segnale è una qualsiasi grandezza che evolve nel tempo. Sono funzioni che hanno come dominio il tempo e codominio l’insieme di tutti.
Reti Logiche A Lezione n.1.4 Introduzione alle porte logiche
Il transistor.
Il transistor.
Cenni sugli amplificatori
ANALOGICO-DIGITALI (ADC) DIGITALE-ANALOGICI (DAC)
ANALOGICO-DIGITALI (ADC) DIGITALE-ANALOGICI (DAC)
CIRCUITI ELETTRONICI ANALOGICI E DIGITALI
Transistor MOSFET Dispositivo a semiconduttore con tre terminali
Giunzioni p-n. Diodo Il drogaggio di un semiconduttore altera drasticamente la conducibilità. Ma non basta, è “statico” ... Cambiare secondo le necessità.
Fisica dei transistor MOS a canale
Famiglie MOS Ci sono due tipi di MOSFET:
Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Circuito Invertitore (1) Implementazione della funzione NOT in logica positiva V(1) = 12 Volts.
Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Trasporto dei portatori (1) Moto di elettroni in un cristallo senza (a) e con (b) campo elettrico.
Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Retta di carico (1) La retta dipende solo da entità esterne al diodo.
Dispositivi unipolari
Conversione Analogico/Digitale
Famiglia IIL (1) Integrated Injection Logic (IIL o I2L )
Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Temperatura ed Energia Cinetica (1) La temperatura di un corpo è legata alla energia cinetica.
Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Il diodo come raddrizzatore (1) 220 V rms 50 Hz Come trasformare una tensione alternata in.
Struttura MIS (Metallo-Isolante-Semiconduttore)
POLARIZZAZIONI DEL BJT
Il TRANSISTOR Il primo transistor della storia.
Il TRANSISTOR Il primo transistor della storia.
COMPONENTI ELETTRONICI DIODI TRANSISTOR TRANSISTOR di potenza.
Le grandezze fondamentali dellelettricità sono: la carica elettrica, la corrente elettrica e il voltaggio. La corrente (I) è definita come la quantità
Circuiti Elettrici.
ELETTRONICA DI BASE.
Il Diodo.
Esperienze di laboratorio “leggero” in aula
DISPOSITIVI DI AMPLIFICAZIONE
STAGE INVERNALE DI ELETTROMAGNETISMO E CIRCUITI
LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis 1 LM Fisica A.A.2013/14 Relazioni corrente-voltaggio Pol Dirette per npn.
LM Fisica A.A.2011/12Fisica dei Dispositivi a Stato Solido - F. De Matteis Transistor a effetto di campo FET Ha ormai sostituito il BJT in molte applicazioni.
1 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis Transistor a effetto di campo FET Ha ormai sostituito il BJT in molte applicazioni.
Giunzioni p-n. Diodo Il drogaggio di un semiconduttore altera drasticamente la conducibilità. Ma non basta, è “statico” ... Cambiare secondo le necessità.
AMPLIFICATORI OPERAZIONALI
Radiotecnica 3 Semiconduttori
Transistor Il transistor (o transistore) è un dispositivo a stato solido formato da semiconduttori. Componente elettronico basato su semiconduttori su.
L’invertitore Circuiti Integrati Digitali L’ottica del progettista
Famiglie logiche generalità
La corrente elettrica continua
I FET (Field-effect Transistor)
Corso di recupero in Fondamenti di Elettronica – Università di Palermo
1 LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis Il canale attivo è generalmente un semiconduttore drogato n per la maggiore.
CIRCUITI ELETTRONICI ANALOGICI E DIGITALI
CIRCUITI ELETTRONICI ANALOGICI E DIGITALI
Transistor a giunzione bipolare
Il livello analogico digitale Semiconduttori Dispositivi a semiconduttore.
4°a Elettronica Cirasa Matteo
RIEPILOGO Transistor JFET
1. Transistor e circuiti integrati
COMPONENTI ELETTRONICI
FAMIGLIE LOGICHE.
Lezione XXIIII Rumore nei circuiti elettronici. Introduzione  Il rumore limita il minimo segnale che un circuito può elaborare mantenendo una qualità.
Semiconduttori Carlo Vignali, I4VIL A.R.I. - Sezione di Parma Corso di preparazione esame patente radioamatore 2016.
Richiami sul transistore MOS
Lezione XXIIII Rumore nei circuiti elettronici. Circuiti rumorosi  Come fare a calcolare il rumore in un circuito le cui fonti di rumore sono diverse.
Lezione III Amplificatori a singolo stadio. L'amplificatore ideale  Un amplificatore ideale è un circuito lineare V out =A v V in  Le tensione di ingresso.
Fisica dei Dispositivi a Stato Solido - F. De Matteis 1 LM Sci&Tecn Mater A.A.2014/15 Capacità MOS Strato di ossido su di un semiconduttore drogato p Un.
Dispositivi unipolari
Transcript della presentazione:

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 I Transistori I transistor sono dispositivi con tre terminali sviluppati dal I tre terminali si chiamano: Emettitore, Base, Collettore. (oppure: Source, Gate, Drain. )

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Dispositivi Bipolari e Unipolari Definizione: un dispositivo bipolare è quello in cui le correnti sono determinate da tutti e due i tipi di portatori. (es. transistor BJT = Bipolar Junction Transistor o Transistor Bipolare a Giunzione) Un dispositivo unipolare è quello in cui le correnti sono determinate solo da un tipo di portatore di carica. (es. transistor FET = Field Effect Transistor o Transistor ad Effetto di Campo)

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Schema di transistor BJT n-p-n Esistono anche i p-n-p con scambio della sequenza dei tre semiconduttori.

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Esempio di implementazione di transistor n-p-n su wafer di silicio Lunghezza di Canale (nodo tecnologico) 45 nm = 450 diametri atomici

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Transistor p-n-p non polarizzato Concentrazioni Campo Elettrico Livelli Energetici Schema

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 ModoEm-BaseCol-Base InterdizioneInversaInversa Zona AttivaDirettaInversa SaturazioneDirettaDiretta Attiva InvertitaInversaDiretta Modi di funzionamento di un BJT

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Transistor p-n-p in regione attiva Concentrazioni Campo Elettrico Livelli Energetici Schema

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Regime attivo di un BJT E

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Il transistor come amplificatore (regione attiva): v c = – (R C g m ) v be Il transistor in interdizione: Correnti molto basse I C 1 nA – 1 A Il transistor in saturazione: Per i casi normali si può dimostrare che: V CE 0.2 V si minimizza la caduta di potenziale ai capi del transistor quando il transistor è in saturazione, ossia linterruttore è chiuso. Regimi di funzionamento: (2)

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Il transistor come interruttore (1) Il transistor T di fig. (a) rimpiazza funzionalmente linterruttore S di fig. (b). Il comportamento di T è definito dalla v be.

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Il transistor come diodo Un transistor può funzionare anche come diodo. Nella costruzione dei circuiti integrati si costruiscono transistor che poi vengono adattati a diodi, per ottimizzare i processi di produzione solo su di un componente, il transistor appunto.

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Retta di carico (1) La retta dipende solo da entità esterne al diodo.

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Retta di carico (2) Dipende solo da entità esterne al transistor.

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Punto di lavoro (1) Punto di lavoro = intersezione tra retta di carico e caratteristica del dispositivo, identificata da una terna di valori V CE, V BE, I C

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Punto di lavoro (2) V BE IBIB

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Punto di lavoro (3)

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Punto di lavoro (4)

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Punto di lavoro (5)

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Limiti di potenza Grafico dei limiti della potenza di un circuito dove è presente un transistor e possibili rette di carico.

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Limiti di funzionamento dei transistor I limiti per un transistor n-p-n 2N2222A: Corrente massima di collettore (800 mA) Massima dissipazione di potenza (0.5 W) Massima tensione di uscita (breakdown V CE < 40 V) Perforazione Massima tensione di ingresso ( V BB < V EB decina V)

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Segnali analogici e digitali (1) Segnale Analogico: la grandezza può assumere qualunque valore allinterno di un intervallo Segnale Digitale Binario: la grandezza può assumere solo 2 valori.

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Livelli logici (1) Tensioni 0 logico 1 logico indeterminato V L1 V L2 V H1 V H2 Sistema a logica positiva Tensioni V L1 V L2 V H1 V H2 Sistema a logica negativa

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Livelli logici (2) Logica positivaLogica negativa

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Segnale Digitale Importanti: i livelli V 1 e V 2 e lintervallo minimo di scansione temporale del segnale (in questo caso t 2 – t 1 )

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Rumore (1) Rumore per segnale analogico

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Rumore (2) Un segnale digitale è più immune al rumore di uno analogico perché ammette una banda di variazione entro cui lo stato è univocamente definito. Mentre il rumore analogico viene trasportato lungo tutto il circuito, quello digitale viene filtrato dal primo dispositivo che attraversa.

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Es.: Invertitore V V t t Caratteristica di trasferimento: reale ideale VOVO VIVI V th V+V+ V+V+

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Rumore (3) Margine di rumore per l1 logico: V OH - V IH Margine di rumore per lo 0 logico: V IL - V OL

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Famiglie Logiche I dispositivi di una famiglia hanno le stesse caratteristiche fondamentali. La classificazione per famiglie è: Famiglie BJT: (TTL,ECL,etc.) Famiglie MOS: (NMOS,CMOS,etc.) Famiglie DTL: (presentano sia diodi che transistor)

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Sistema DL (Diode Logic) Porta OR implementata in logica negativa con il sistema DL. V(1) = 0 Volts V(0) = 5 Volts V R = V(0) = 5 Volts

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Porta OR in logica negativa Se tutti gli ingressi sono nello stato 0 (V=5 Volts) V R – v 1 = 0 ; V R – v 2 = 0 ; V R – v 3 = 0 ; Tutti i diodi sono polarizzati inversi e non conducono v 0 = V(0) = 5 Volts Se un ingresso v 1 = V(1) = 0 Volts il diodo D 1 sarà polarizzato direttamente; infatti: v 0 = V(0) – [V(0)-V(1)- V ]R/(R+R s +R f ) R f = resistenza diretta del diodo. Se si sceglie R>> R s –R f v 0 V(1) + V Volts = V(1)

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Porta AND in logica positiva (1) Che succede se prendiamo lo stesso circuito ed applichiamo una logica positiva: V(1) = 5 Volts V(0) = 0 Volts V R = V(1) = 5 Volts

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Porta AND in logica positiva (2) Se tutti gli ingressi sono nello stato 1 (V=5 Volts) V R – v 1 = 0 ; V R – v 2 = 0 ; V R – v 3 = 0 ; Tutti i diodi sono polarizzati inversi e non conducono v 0 = V(1) = 5 Volts Se un ingresso v 1 = V(0) = 0 Volts il diodo D 1 sarà polarizzato direttamente; infatti: v 0 = V(1) – [V(1)-V(0)- V ]R/(R+R s +R f ) R f = resistenza diretta del diodo. Se si sceglie R>> R s –R f v 0 V(0) + V Volts = V(0)

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Porta AND in logica negativa (1) In questo caso costruiamo una porta AND in logica negativa: V(1) = 0 Volts V(0) = 5 Volts V R = V(1) = 0 Volts

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Porta AND in logica negativa (2) Se un solo ingresso v 1 è nello stato 0 (V=5 Volts) Il diodo corrispondente è polarizzato direttamente. Infatti: v 0 = V(0) – [V(0)-V(1)- V ] R s /(R+R s +R f ) – V Poiché R s /(R+R s +R f ) << 1 v 0 V(0) Se tutti gli ingressi sono nello stato 1 (V=0 Volts) per tutti i diodi vale: v 1 – V(1) = 0 ; v 2 – V(1) = 0 ; v 3 – V(1) = 0 ; Tutti i diodi sono polarizzati inversamente v 0 =V(1)