Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Retta di carico (1) La retta dipende solo da entità esterne al diodo.

Slides:



Advertisements
Presentazioni simili
Algebra Booleana Generalità
Advertisements

D. Menasce1 Queste trasparenze sono disponibili sul sito web dellautore: (selezionare lopzione COURSES) Queste.
Introduzione ai circuiti elettronici digitali
Storia dell'A.O. Introduzione A.O. Invertente A.O. non invertente
Storia dell'A.O. Introduzione A.O. Invertente A.O. non invertente esci
Cenni sugli amplificatori
COMPONENTI ELETTRONICI
Cella fotovoltaica Un semplice esperimento
Algebra di Boole.
Attività Sperimentale 2008 Elettronica
SAMPLE & HOLD.
Segnali e Sistemi Un segnale è una qualsiasi grandezza che evolve nel tempo. Sono funzioni che hanno come dominio il tempo e codominio l’insieme di tutti.
Reti Logiche A Lezione n.1.4 Introduzione alle porte logiche
Sintesi con circuiti LSI-MSI
Il transistor.
Il transistor.
Cenni sugli amplificatori
ANALOGICO-DIGITALI (ADC) DIGITALE-ANALOGICI (DAC)
CIRCUITI ELETTRONICI ANALOGICI E DIGITALI
Autronica LEZIONE 3.
Transistor MOSFET Dispositivo a semiconduttore con tre terminali
Spettro di frequenza dei segnali
Famiglie MOS Ci sono due tipi di MOSFET:
Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Circuito Invertitore (1) Implementazione della funzione NOT in logica positiva V(1) = 12 Volts.
Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Trasporto dei portatori (1) Moto di elettroni in un cristallo senza (a) e con (b) campo elettrico.
Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 I Transistori I transistor sono dispositivi con tre terminali sviluppati dal I tre terminali.
Dispositivi unipolari
Conversione Analogico/Digitale
Famiglia IIL (1) Integrated Injection Logic (IIL o I2L )
Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Il diodo come raddrizzatore (1) 220 V rms 50 Hz Come trasformare una tensione alternata in.
Convertitore A/D e circuito S/H
Sintesi con circuiti LSI-MSI. Realizzazione di reti combinatorie mediante Multiplexers Un multiplexer (MPX ) é una rete combinatoria con N ingressi, una.
POLARIZZAZIONI DEL BJT
Il TRANSISTOR Il primo transistor della storia.
PRESENTAZIONE DEGLI ARGOMENTI: SIMBOLI GRAFICI E RELATIVE OPERAZIONI LOGICHE TABELLE DI VERITA INTEGRATI DIGITALI DELLE FAMIGLIE TTL E CMOS E LORO RICONOSCIMENTO.
L’amplificatore operazionale (AO)
DISPOSITIVI DI AMPLIFICAZIONE
LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis 1 LM Fisica A.A.2013/14 Relazioni corrente-voltaggio Pol Dirette per npn.
AMPLIFICATORI OPERAZIONALI
Circuiti Integrati Digitali L’ottica del progettista
Radiotecnica 3 Semiconduttori
Transistor Il transistor (o transistore) è un dispositivo a stato solido formato da semiconduttori. Componente elettronico basato su semiconduttori su.
L’invertitore Circuiti Integrati Digitali L’ottica del progettista
Famiglie logiche generalità
Il circuito raddrizzatore ad una semionda
Università degli studi di Parma Dipartimento di Ingegneria dell’Informazione Politecnico di Milano © 2001/02 - William Fornaciari Reti Logiche A Lezione.
La corrente elettrica continua
Corso di recupero in Fondamenti di Elettronica – Università di Palermo
DISPOSITIVI E CIRCUITI INTEGRATI
LATCH. Circuiti Sequenziali I circuiti sequenziali sono circuiti in cui lo stato di uscita del sistema dipende non soltanto dallo stato di ingresso presente.
Circuiti di memorizzazione elementari: i Flip Flop
Autronica 3.1 Autronica LEZIONE 3. Autronica 3.2 Il mondo esterno è caratterizzato da variabili analogiche  Un segnale analogico ha un’ampiezza che varia.
Circuiti digitali Architettura © Roberto Bisiani, 2000,2001
Algebra di Boole L’algebra di Boole è un formalismo che opera su variabili (dette variabili booleane o variabili logiche o asserzioni) che possono assumere.
CIRCUITI ELETTRONICI ANALOGICI E DIGITALI
CIRCUITI ELETTRONICI ANALOGICI E DIGITALI
Il livello analogico digitale Semiconduttori Dispositivi a semiconduttore.
Data Acquisition System I° Modulo(DAS) Corso di Elettronica1.
COMPONENTI ELETTRONICI
FAMIGLIE LOGICHE.
Logica di base e Conversione analogico-digitale Lezione 3 / Prima parte Gaetano Arena e.mail: 1.
Calliope-Louisa Sotiropoulou I NTRODUZIONE ALLA T ECNOLOGIA D ELL ’FPGA F IELD P ROGRAMMABLE G ATE A RRAYS PISA, 02/03/2016 Marie Curie IAPP Fellow - University.
Laboratorio II, modulo Elettronica digitale ( cfr. )
Richiami sul transistore MOS
Amplificatori operazionali
Lezione XXIIII Rumore nei circuiti elettronici. Circuiti rumorosi  Come fare a calcolare il rumore in un circuito le cui fonti di rumore sono diverse.
Lezione III Amplificatori a singolo stadio. L'amplificatore ideale  Un amplificatore ideale è un circuito lineare V out =A v V in  Le tensione di ingresso.
Laboratorio II, modulo Elettronica digitale (2a parte) (cfr.
Transcript della presentazione:

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Retta di carico (1) La retta dipende solo da entità esterne al diodo.

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 2 Retta di carico (2) Dipende solo da entità esterne al transistor.

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 3 Punto di lavoro (1) Punto di lavoro = intersezione tra retta di carico e caratteristica del dispositivo, identificata da una terna di valori V CE, V BE, I C

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 4 Punto di lavoro (2) V BE IBIB

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 5 Punto di lavoro (3)

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 6 Punto di lavoro (4)

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 7 Punto di lavoro (5)

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 8 Limiti di potenza Grafico dei limiti della potenza di un circuito dove è presente un transistor e possibili rette di carico.

Corso Fisica dei Dispositivi Elettronici Leonello Servoli 9 Limiti di funzionamento dei transistor I limiti per un transistor n-p-n 2N2222A: Corrente massima di collettore (800 mA) Massima dissipazione di potenza (0.5 W) Massima tensione di uscita (breakdown V CE < 40 V) Perforazione Massima tensione di ingresso ( V BB < V EB decina V)

Segnali analogici e digitali (1) Segnale Analogico: la grandezza può assumere qualunque valore allinterno di un intervallo Segnale Digitale Binario: la grandezza può assumere solo 2 valori.

Livelli logici (1) Tensioni 0 logico 1 logico indeterminato V L1 V L2 V H1 V H2 Sistema a logica positiva Tensioni V L1 V L2 V H1 V H2 Sistema a logica negativa

Livelli logici (2) Logica positivaLogica negativa

Segnale Digitale Importanti: i livelli V 1 e V 2 e lintervallo minimo di scansione temporale del segnale (in questo caso t 2 – t 1 )

Rumore (1) Rumore per segnale analogico

Rumore (2) Un segnale digitale è più immune al rumore di uno analogico perché ammette una banda di variazione entro cui lo stato è univocamente definito. Mentre il rumore analogico viene trasportato lungo tutto il circuito, quello digitale viene filtrato dal primo dispositivo che attraversa.

Es.: Invertitore V V t t Caratteristica di trasferimento: reale ideale VOVO VIVI V th V+V+ V+V+

Rumore (3) Margine di rumore per l1 logico: V OH - V IH Margine di rumore per lo 0 logico: V IL - V OL

Funzioni logiche (1) Funzione binaria a una variabile: Z=f(A) Z = A ; Z = A 2 possibili funzioni logiche Funzione binaria a due variabili: Z=f(A,B) 4 combinazioni di input (2x2) 4 valori per la funzione di output, uno per ogni combinazione Quindi 16 possibili funzioni logiche.

Funzioni logiche (2) Le 16 funzioni logiche non sono indipendenti. Le funzioni più note sono: AND,OR,NAND,NOR,XOR (porte logiche) Essenzialmente basta una sola funzione per realizzare tutte le altre (NAND o NOR). È sufficiente progettare un dispositivo elettronico che implementi una di queste porte logiche per poter descrivere completamente lo spazio delle funzioni logiche di due variabili.

Funzioni logiche (3) Si possono definire delle operazioni allinterno dello spazio delle variabili logiche: Operazione somma (+) A + B = 1 se A o B sono 1; 0 se A e B sono 0; Operazione prodotto: A x B = 0 se A o B sono 0; 1 se A e B sono 1;

Famiglie Logiche I dispositivi di una famiglia hanno le stesse caratteristiche fondamentali. La classificazione per famiglie è: Famiglie BJT: (TTL,ECL,etc.) Famiglie MOS: (NMOS,CMOS,etc.) Famiglie DTL: (presentano sia diodi che transistor)

Sistema DL (Diode Logic) Porta OR implementata in logica negativa con il sistema DL. V(1) = 0 Volts V(0) = 5 Volts V R = V(0) = 5 Volts

Porta OR in logica negativa Se tutti gli ingressi sono nello stato 0 (V=5 Volts) V R – v 1 = 0 ; V R – v 2 = 0 ; V R – v 3 = 0 ; Tutti i diodi sono polarizzati inversi e non conducono v 0 = V(0) = 5 Volts Se un ingresso v 1 = V(1) = 0 Volts il diodo D 1 sarà polarizzato direttamente; infatti: v 0 = V(0) – [V(0)-V(1)- V ]R/(R+R s +R f ) R f = resistenza diretta del diodo. Se si sceglie R>> R s –R f v 0 V(1) + V Volts = V(1)

Porta AND in logica positiva (1) Che succede se prendiamo lo stesso circuito ed applichiamo una logica positiva: V(1) = 5 Volts V(0) = 0 Volts V R = V(1) = 5 Volts

Porta AND in logica positiva (2) Se tutti gli ingressi sono nello stato 1 (V=5 Volts) V R – v 1 = 0 ; V R – v 2 = 0 ; V R – v 3 = 0 ; Tutti i diodi sono polarizzati inversi e non conducono v 0 = V(1) = 5 Volts Se un ingresso v 1 = V(0) = 0 Volts il diodo D 1 sarà polarizzato direttamente; infatti: v 0 = V(1) – [V(1)-V(0)- V ]R/(R+R s +R f ) R f = resistenza diretta del diodo. Se si sceglie R>> R s –R f v 0 V(0) + V Volts = V(0)

Porta AND in logica negativa (1) In questo caso costruiamo una porta AND in logica negativa: V(1) = 0 Volts V(0) = 5 Volts V R = V(1) = 0 Volts

Porta AND in logica negativa (2) Se un solo ingresso v 1 è nello stato 0 (V=5 Volts) Il diodo corrispondente è polarizzato direttamente. Infatti: v 0 = V(0) – [V(0)-V(1)- V ] R s /(R+R s +R f ) – V Poiché R s /(R+R s +R f ) << 1 v 0 V(0) Se tutti gli ingressi sono nello stato 1 (V=0 Volts) per tutti i diodi vale: v 1 – V(1) = 0 ; v 2 – V(1) = 0 ; v 3 – V(1) = 0 ; Tutti i diodi sono polarizzati inversamente v 0 =V(1)