Moti con accelerazione costante

Slides:



Advertisements
Presentazioni simili
HALLIDAY - capitolo 4 problema 4
Advertisements

HALLIDAY - capitolo 5 problema 19
LA DESCRIZIONE DEL MOTO
CINEMATICA SINTESI E APPUNTI.
Il moto del proiettile.
Agenda per oggi Cinematica 2-D, 3-D 1.
A. Stefanel - Esercizi di meccanica 1
Meccanica 10 8 aprile 2011 Slittamento. Rotolamento puro
Esercizi di dinamica.
GETTO DEL PESO Modello fisico del getto del peso.
Primo principio della dinamica
Cinematica: moto dei corpi Dinamica: cause del moto
MECCANICA (descrizione del moto dei corpi)
Il concetto di “punto materiale”
Applicazione h Si consideri un punto materiale
Lavoro ed energia cinetica: introduzione
Le forze conservative g P2 P1 U= energia potenziale
Il lavoro [L]=[F][L]=[ML-2T -2] S.I.: 1 Joule = 1 m2 kg s-2
Un corpo di massa m= 0.5 kg, che si muove su di un piano orizzontale liscio con velocità v=0.5 m/s verso sinistra, colpisce una molla di costante elastica.
Moto dell’auto azzurra:
Una sfera di raggio r =1 m è poggiata su un piano orizzontale e mantenuta fissa. Un cubetto di piccole dimensioni è posto in equilibrio instabile sulla.
Il concetto di “punto materiale”
G. Pugliese, corso di Fisica Generale
La reazione vincolare Consideriamo un corpo fermo su di un tavolo orizzontale. La sua accelerazione è nulla. Dalla II legge di Newton ricaviamo che la.
Dall’ugello della doccia sgocciola l’acqua cadendo sul fondo posto 2
Rotazione di un corpo rigido attorno ad un asse fisso
Velocità ed accelerazione
Posizione di un punto nello spazio
Moto in due dimensioni.
I diagramma del corpo libero con le forze agenti
Una sfera di raggio r =1 m è poggiata su un piano orizzontale e mantenuta fissa. Un cubetto di piccole dimensioni è posto in equilibrio instabile sulla.
Consigli per la risoluzione dei problemi
Dinamica del punto materiale
Il lavoro dipende dal percorso??
N mg La reazione Vincolare
Applicazione Auto Camion xAo=0 m xCo=0 m vAox=0 m/s vCox=9.5 m/s
La forza elettrostatica o di Coulomb
G.M. - Edile A 2002/03 Appli cazio ne Si consideri un punto materiale –posto ad un altezza h dal suolo, –posto su un piano inclinato liscio di altezza.
Grandezze scalari e vettoriali
G.M. - Edile A 2002/03 Appli cazio ne Si consideri un punto materiale –posto ad un altezza h dal suolo, –posto su un piano inclinato liscio di altezza.
Lezione 4 Dinamica del punto
Lezione 2 Argomenti della lezione Moto nel piano
Agenda di oggi Attrito Cos’è? Come lo caratterizziamo?
CINEMATICA DINAMICA ENERGIA. Cosa rappresenta la linea a ? a LO SPAZIO PERCORSO LA TRAIETTORIA LA POSIZIONE RAGGIUNTA ……………...
I PRINICIPI DELLA DINAMICA.
Corso di Fisica - Forze: applicazioni
Biomeccanica Cinematica Dinamica Statica dei corpi rigidi
Il Movimento e le sue cause
Meccanica I moti rettilinei
Meccanica I moti rettilinei
IL MOTO LUNGO IL PIANO INCLINATO E LE SUE COMPONENTI.
Esempio 1 Un blocco di massa m = 10kg deve essere trasportato dalla base all’estremità superiore di un piano inclinato, percorrendo 5 m sul piano inclinato,
Il moto armonico Palermo Filomena.
Moto di un proiettile Il moto di un proiettile è il moto di un peso che viene lanciato in aria obliquamente. Il lancio di una palla da baseball, da golf.
CINEMATICA e DINAMICA.
FORZA DI ATTRITO Reazioni vincolari: a causa dell'interazione sistema/ambiente, una massa può essere sottoposta all’azione di una forza di reazione che.
Esempio 2 Consideriamo una molla attaccata al soffitto con un peso agganciato all’estremità inferiore in condizioni di equilibrio. Le forze esercitate.
Esercizi (attrito trascurabile)
VARI TIPI DI MOTO Grandezze Traiettoria MOTO MOTO RETTILINEO
Meccanica 10. Le forze e il movimento.
MOTO circolare uniforme
Università Federico II di Napoli Facoltà di Scienze Matematiche Fisiche e Naturali Corso di laurea in Informatica Fisica Sperimentale I Gruppo 1 Docente.
Esercizio-Tre blocchi di massa rispettivamente m 1 =5Kg, m 2 =2 Kg e m 3 =3Kg poggiano su un piano orizzontale e sono uniti da due funi (vedi figura).
Prof.ssa Veronica Matteo
Cinematica del punto materiale Studia il moto dei corpi senza riferimento alle sue cause Il moto è completamente determinato se e` nota la posizione del.
Transcript della presentazione:

Moti con accelerazione costante Se la risultante delle Forze su un corpo è una costante Il moto è caratterizzato da accelerazione costante. Se a0 è l’accelerazione costante, queste sono la legge del moto, la relazione fra velocità e tempo, e la relazione fra posizione e velocità Dove x0 e v0 sono la posizione e la velocità a t=0 X Y Come esempio abbiamo un corpo in caduta libera (si trascura la resistenza dell’aria) da un’altezza h dal suolo. Se il corpo parte da fermo (v0=0) si può calcolare il tempo di caduta tc, e la velocità di impatto al suolo: Se il corpo è lanciato verso l’alto con v00, si può calcolare il tempo che impiega a raggiungere l’apice (dove v0=0) e l’altezza massima raggiunta:

Piano inclinato liscio mg mg sin() mg cos()   Consideriamo il caco si un corpo in moto lungo un piano inclinato liscio. Le forze in gioco sono la forza peso e la forza normale del piano. Si fissa l’asse x lungo il piano inclinato e l’asse y è perpendicolare. Se si fissa x0=0, si può calcolare la velocità alla fine della rampa e il tempo che impiega ad arrivare alla fine della rampa Se il corpo parte da fermo, v0=0, si ottiene semplicemente:

Piano inclinato con attrito mg mg sin() mg cos() fA Se statico: corpo non si muove e fA controbilancia Le altre forze in modo che la risultante lungo x sia nulla. Al massimo: Fs_max=SN La pendenza critica c è quell’angolo oltre il quale la F atrito statica non ce la fa a controbilanciare, quindi quando  >c : Con attrito dinamico, fA=dN e diretta in senso contrario al moto, per una discesa :

Con che Velocità arriva alla fine della rampa? Applico la relazione fra spazio percorso e velocità: Dopo quanto tempo arriva a Fine rampa? Se parte da fermo (v0=0):

Piano inclinato con attrito (salita) d La situazione è analoga al caso precedente Ma in questo caso le componenti lungo X della forza peso e dell’attrito sono concordi. h N h1  Y X FA mg Sempre applicando le relazioni del moto con accelerazione costante si può trovare la distanza d massima percorsa, La quota h1 massima raggiunta e l’istante tf in cui la velocità si annulla. Poi il moto continuerà verso il basso, se >c.

Rampa (piano inclinato liscio) + moto parabolico Il problema si divide in due. 1) Prima si risolve il moto sulla rampa di lunghezza L e altezza h, trovando la velocità alla fine della rampa. Alla fine della rampa (punto A) il corpo lascia il piano e continua nel vuoto: 2) a quel punto si risolve il problema considerando il moto sotto l’azione della sola forza peso (moto parabolico) partendo da una quota h0 e con una velocità iniziale vA in modulo e diretta con angolo . (1) (2) vA h A h0 v0 N  Y X mg d

Punto più alto (y max) La distanza del punto di impatto dal piede della perpendicolare della fine della rampa (distanza d in figura) si calcola considerando l’intersezione della traiettoria y(t) con l’asse x (y=0), da cui si ottiene il tempo d’impatto tf. La componente orizzontale della velocità è costante. Per calcolare d basta moltiplicare il tempo di impatto per la componente orizzontale della velocità.

Piano inclinato con attrito (salita) + traino Se su un piano inclinato scabro un corpo è trascinato con una fune parallela al piano inclinato a cui è applicata una tensione T Il corpo si muove verso l’alto con una accelerazione che può essere >, 0, o <0. Il problema è una semplificazione di come funziona uno ski-lift, dove di solito si procede a velocità costante. In questo caso la risultante delle forze deve fare zero. Vediamo quale è la tensione della forza in questo caso. h N h1  Y X FA mg