(X) Processi irreversibili

Slides:



Advertisements
Presentazioni simili
Le forze ed i loro effetti
Advertisements

Equazioni e calcoli chimici
2. Introduzione alla probabilità
Lavoro adiabatico e calore , esperimenti di Joule
In quanto il calore scambiato dipende dal in quanto il calore scambiato dipende dal nel seguito di questo corso indicheremo il calore infinitesimo scambiato.
Diagrammi TS l’entropia e’ funzione di stato e puo’ essere usata,
1 2. Introduzione alla probabilità Definizioni preliminari: Prova: è un esperimento il cui esito è aleatorio Spazio degli eventi elementari : è linsieme.
Fisica 1 Termodinamica 4a lezione.
Fisica 1 Termodinamica 9a lezione.
Elettrostatica 3 23 maggio 2011
Marina Cobal - Dipt.di Fisica - Universita' di Udine
Fisica 2 Corrente continua
Meccanica aprile 2011 Urti Conservazione della quantita` di moto e teorema dell’impulso Energia cinetica Urti elastici e anelastici Urto con corpi.
Meccanica 8 31 marzo 2011 Teorema del momento angolare. 2° eq. Cardinale Conservazione del momento angolare Sistema del centro di massa. Teoremi di Koenig.
Teoria della relatività-1 17 dicembre 2012
Termodinamica 2 19 aprile 2011 Leggi del gas ideale
3. Processi Stocastici Un processo stocastico è una funzione del tempo i cui valori x(t) ad ogni istante di tempo t sono v.a. Notazione: X : insieme di.
2o Principio della Termodinamica :
Equivalenza meccanica del calore (Mayer-Joule)
Termodinamica classica
Processi Aleatori : Introduzione – Parte I
Lenergia interna di un gas ideale dipende solo dalla temperatura. Non ci sono interazioni tra le particelle. P V a b a b a b a b AB Espansione isoterma.
Prof. Antonello Tinti La corrente elettrica.
Le forze conservative g P2 P1 U= energia potenziale
Dinamica del punto materiale
Trasformazioni cicliche
FISICA DELLE NUBI Corso: Idraulica Ambientale
Lezione 9 Termodinamica
Magnetismo nella materia
Alcuni aspetti rilevanti in scienza dei materiali
Prof. Michele MICCIO1 Calore specifico Si dice calore specifico di una sostanza la quantità di calore necessaria a innalzare di un grado la temperatura,
Metodi numerici per equazioni differenziali ordinarie Laboratorio di Metodi Numerici a.a. 2008/2009.
Lezione 13 Equazione di Klein-Gordon Equazione di Dirac (prima parte)
Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE EQUILIBRIO CHIMICO Una reazione chimica si dice completa (o "che va a completamento")
CARATTERISTICHE FONDAMENTALI DELL’EQUILIBRIO DINAMICO:
LA CONSERVAZIONE DELL’ENERGIA
ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO
Derivate Parziali di una Funzione di più Variabili
1 Lidraulica, un pretesto per … PL –ix/09. 2 … introdurre alcune idee fondamentali Spinta (differenza) Portata Quantità bilanciabile Equilibrio (assenza.
Cinetica chimica In realtà in assenza di catalizzatore non avviene mai! La termodinamica descrive la stabilità relativa degli stati iniziale e finale,
Sett. 5 Liv. 1 (Chimica Fisica) Stanza 4
Termodinamica.
Equilibrio chimico in fase gassosa
del corpo rigido definizione
Stabilità per E.D.O. (I): STABILITÀ LINEARIZZATA
Termodinamica G. Pugliese.
Ambiente: il resto dell’universo che non fa parte del sistema
Giunzioni p-n. Diodo Il drogaggio di un semiconduttore altera drasticamente la conducibilità. Ma non basta, è “statico” ... Cambiare secondo le necessità.
Sistema, Ambiente e Universo
Università Cattolica del Sacro Cuore
Perché le cose accadono? Cos’è la spontaneità? E’ la capacità di un processo di avvenire «naturalmente» senza interventi esterni In termodinamica, un processo.
La corrente elettrica continua
Sistema, Ambiente e Universo
1 Lezione XV-b Avviare la presentazione col tasto “Invio”
1 Lezione XV-a Avviare la presentazione col tasto “Invio”
Termodinamica Introduzione. La TERMODINAMICA è nata per studiare i fenomeni termici, in particolare per studiare il funzionamento delle macchine termiche.
L’ energia è una grandezza conservativa non può essere distrutta non può essere generata può essere convertita da una forma ad un’altra La qualità dell’energia.
Ciclo di Carnot. Termodinamica La termodinamica studia le trasformazioni e passaggi di energia da un sistema ad un altro e da una forma all’altra, ovvero.
ANALISI DEI SEGNALI Si dice segnale la variazione di una qualsiasi grandezza fisica in funzione del tempo. Ad esempio: la pressione in un punto dello spazio.
CARICA ELETTRICA strofinato con seta strofinata con materiale acrilico Cariche di due tipi: + Positiva - Negativa repulsiva attrattiva.
La spontaneità è la capacità di un processo di avvenire senza interventi esterni Accade “naturalmente” Termodinamica: un processo è spontaneo se avviene.
Bilancio macroscopico di materia
Termodinamica La termodinamica è la scienza che studia il trasferimento e le trasformazioni dell’energia, nonché le connesse variazioni delle proprietà.
Transcript della presentazione:

(X) Processi irreversibili Entropia e la direzione del tempo Microscopicamente le equazioni della fisica sono reversibili, cioè si può invertire la freccia del tempo ...! Macroscopicamente c’è solo una direzione temporale... vale a dire i processi sono irreversibili. La chiave per la comprensione è costituita dall’entropia (S). In ogni processo irreversibile che avviene in un sistema isolato l’entropia aumenta. (X) Processi irreversibili

STATI e PROCESSI TERMODINAMICI Sistema Ambiente Universo Energia Materia Per descrivere un sistema termodinamico è necessario specificare lo STATO in cui esso si trova. Il sistema cambia nel tempo il proprio stato in seguito alla interazione con l’ambiente . Il passaggio attraverso differenti stati termodinamici è un PROCESSO o trasformazione del sistema. (X) Processi irreversibili

Sistema termodinamico flusso di energia (calore e massa) per la fase II dovuto all'interazione con l'esterno Regione II Regione I (eventuali) reazioni chimiche interne alla regione contributo alla variazione di massa del componente g-esimo nella fase II, interna al sistema per reazioni chimiche (se presenti) interne alla fase e/o trasferimenti di fase (se le fasi sono aperte). flusso di energia verso la fase I dovuto al calore e alla materia proveniente dalla fase II flusso di energia verso la fase I proveniente dall'esterno e dalla fase II principio della conservazione della massa Se il sistema si dice CHIUSO e ngr è il coeff. stechiometrico del g-esimo componente della r-esima reazione interna al sistema; dxr è il grado di avanzamento della r-esima reazione. (X) Processi irreversibili

I e II Legge della Termodinamica principio della conservazione della energia la variazione di energia è uguale al flusso di energia che il sistema riceve dall'esterno (diE=0) First Law: “You cannot build a perpetual motion machine of the first kind. (You cannot get more energy out than you put in).” In other words, “YOU CAN’T WIN!” Second Law: “You cannot build a perpetual motion machine of the second kind. ( You cannot build a machine that is 100% efficient).” In other words, “YOU LOSE!” principio della produzione di entropia la variazione di entropia dovuta a cambiamenti interni al sistema non può essere negativa Regione II Regione I Ogni regione macroscopica produce entropia (processo irreversibile) L'interferenza tra processi irreversibili è possibile solo quando questi avvengono nella stessa regione del sistema (X) Processi irreversibili

CHE COSA SUCCEDE AL SISTEMA DURANTE UN PROCESSO TERMODINAMICO? Abbiamo a disposizione due modi distinti ma strettamente correlati per scoprirlo: Termodinamica dell’equilibrio (fin dal 1700) Termodinamica del non-equilibrio (1940-1960 fino a oggi) (X) Processi irreversibili 5

(X) Processi irreversibili Processo Reversibile I parametri di stato sono definiti durante la trasformazione. Assenza di forze dissipative Non c’è frizione Non ci sono forze non bilanciate. Distinguere il processo quasi-statico da quello reversibile. I processi reversibili realizzano il lavoro massimo Può essere “invertito” con un cambiamento infinitesimo di una variabile. Il sistema è, istante per istante, in equilibrio con l’ambiente e la trasformazione richiede un tempo infinito. Rappresenta un concetto astratto da introdurre nella Termodinamica Classica dell’Equilibrio che non utilizza la variabile tempo. (X) Processi irreversibili

Termodinamica dell’EQUILIBRIO STATO DI EQUILIBRIO Prima Dopo Grandezza Esempio m1 m2 m1=m2 Potenziale chimico Ghiaccio nell’acqua T1 T2 T1=T2 Temperatura Bottiglia in montagna p1 p2 p1=p2 Pressione Reazioni chimiche A≠0 A=0 Affinità Secondo la IUPAC, l’affinità chimica è definita come l’opposta della derivata parziale dell'energia libera di Gibbs rispetto al grado di avanzamento della reazione, a pressione e temperatura costanti. Il sistema si trova in uno stato di equilibrio termodinamico se e solo se in tutte le sue parti sono costanti e uniformi la temperatura e la pressione e se si trova in equilibrio chimico. (X) Processi irreversibili

(X) Processi irreversibili Processo Irreversibile I parametri di stato non sono ben definiti. Durante la trasformazione gli stati termodinamici non sono definiti. E' impossibile ripercorrere la trasformazione “all’indietro”. Richiede un tempo finito. Successione di stati di non-equilibrio in presenza di forze termodinamiche (o generalizzate) non nulle. FORZA FLUSSO Fenomeno Propagazione del calore Differenza di temperatura Calore Differenza di potenziale chimico Materia Diffusione della materia Affinità chimica Velocità di reazione Reazione chimica (X) Processi irreversibili

(X) Processi irreversibili Produzione di entropia in un sistema chiuso dovuta a flusso di calore Regione II Regione I dato che il sistema è, per ipotesi, globalmente chiuso. Per questa trasformazione irreversibile risulta quindi che il verso del calore è dettato dal verso della forza termodinamica Ipotesi: le due regioni (I e II) sono reciprocamente chiuse. oppure La produzione di entropia si arresta quando la forza si annulla (TI =TII ). La produzione di entropia nell'unità di tempo sarà: corrispondente al prodotto della velocità del processo irreversibile per la forza termodinamica. (X) Processi irreversibili

(X) Processi irreversibili Entropia di sistemi in presenza di reazioni chimiche affinità chimica Nel caso di più reazioni simultanee affinità chimica della r-esima reazione (X) Processi irreversibili

(X) Processi irreversibili Produzione di entropia in un sistema chiuso dovuta a reazioni chimiche affinità chimica la velocità di reazione è concorde con l'affinità chimica. Anche in questo caso la produzione di entropia nell'unità di tempo dipende dal prodotto di una forza termodinamica (A/T) per la velocità della reazione. Se avvengono più reazioni simultaneamente la produzione di entropia deve essere globalmente non negativa In questo caso potrebbe accadere, ad esempio, che due reazioni siano accoppiate in modo da avere: però dovrà risultare comunque (X) Processi irreversibili

(X) Processi irreversibili Produzione di entropia in un sistema chiuso con regioni aperte II I variazione di moli del g-esimo componente dovuta a diffusione dalla regione II (dengI) e per una eventuale reazione che avviene nella regione I (dingI) Anche in questo caso la produzione di entropia nell'unità di tempo è una forma bilineare delle velocità di processi reversibili e funzioni di stato (affinità o ‘forze generalizzate’). 12 (X) Processi irreversibili

Processo irreversibile In generale la produzione di entropia sarà data dalla somma di prodotti di forze termodinamiche o affinità (Xk) per i corrispondenti flussi o velocità (Jk). Legge di Fourier - Legge di Fick Effetti incrociati: diffusione termica, effetto termoionico... Relazioni di reciprocità - Principio di simmetria - STATI STAZIONARI DI NON-EQUILIBRIO Vicino all'equilibrio (regione lineare): NUOVE STRUTTURE: MONDO “ORDINATO”? Lontano dall'equilibrio (regione non lineare): (X) Processi irreversibili 13

(X) Processi irreversibili Processo irreversibile vicino all'equilibrio All'equilibrio la produzione di entropia si arresta per cui si annullano sia le forze termodinamiche (Xk) sia i flussi (Jk). In vicinanza dell'equilibrio si può ragionevolmente assumere (ipotesi extra-termodinamica) che esistano delle relazioni fenomelogiche LINEARI tra le velocità (o flussi) e le forze (o affinità). I coefficienti costanti Lik sono detti coefficienti fenomenologici. Quelli con i≠k sono detti reciproci e descrivono l'interferenza tra i due processi, gli altri sono detti coefficienti propri del processo. Lii è sempre >0, mentre Lik (i≠k ) può anche essere negativo. Quando Lik =0 (con i≠k ) i due processi irreversibili sono indipendenti. Teorema di Onsager Teorema di Onsager inverso (X) Processi irreversibili

(X) Processi irreversibili Nel caso di due processi irreversibili simultanei si ha: (X) Processi irreversibili

(X) Processi irreversibili Campo di validità delle leggi fenomenologiche Esempio 1 -Processo di trasporto- Se in un sistema avviene un semplice processo di trasporto di calore allora la produzione di entropia nell’unità di tempo, trascurando i processi diffusivi e le reazioni chimiche, sarà La relazione fenomenologica coincide con la Legge di Fourier per la conduttività termica che si può applicare quando la variazione relativa di temperatura è piccola entro una distanza uguale al cammino libero medio (f), cioè se vale: Questa condizione è soddisfatta nella maggior parte dei casi ed in generale le leggi fenomenologiche dànno una buona approssimazione per i processi di trasporto. 16 (X) Processi irreversibili

(X) Processi irreversibili Esempio 2 -Caso delle reazioni chimiche- Caso di un sistema in cui avvenga una reazione chimica semplice. Allo scopo di confrontare la legge fenomenologica con quella cinetica consideriamo la reazione Relazione generale tra la velocità di reazione e l’affinità. Per reazioni vicine all’equilibrio e la formula si riduce a Significato fisico del coefficiente fenomenologico per una reazione chimica Nell’altro caso limite (stadio iniziale della reazione) si ha: indipendente da A (effetto di saturazione). In questo caso l’entropia è prodotta con legge lineare rispetto ad A. 17 (X) Processi irreversibili

(X) Processi irreversibili Quando l'affinità è grande, la reazione può spesso essere scissa in step elementari con affinità piccola. Se i prodotti intermedi sono instabili, dopo un breve intervallo, si stabilisce uno stato stazionario (v1 = v2 =...= vr = v) Se (per ogni singolo stadio) siamo ancora nel campo di validità delle leggi fenomenologiche lineari anche se (per il processo complessivo). E' interessante osservare che spesso i processi biologici sono multistadi, ciascuno dei quali è quasi-reversibile, per cui si può applicare ad essi la trattazione fenomenologica lineare come riportato in precedenza. 18 (X) Processi irreversibili

(X) Processi irreversibili Le eq. cinetiche formali diventano molto semplici vicino all'equilibrio e questo porta ad applicazioni interessanti. Dalla legge fenomenologica sviluppando in serie l'affinità (in prossimità dell'equilibrio) t = tempo di rilassamento >0 Nel caso di r reazioni simultanee, ogni grado di avanzamento può essere rappresentato come una semplice sovrapposizione di r funzioni esponenziali nel tempo, della forma Si può dimostrare che, qualunque siano le condizioni iniziali, xr può incrociare il suo valore all'equilibrio soltanto (al massimo) un numero (r-1) di volte; questo implica che è impossibile un comportamento periodico nel tempo con un numero finito di reazioni. 19 (X) Processi irreversibili

(X) Processi irreversibili Quali processi irreversibili sono capaci di mutua interferenza? Esempio. Consideriamo un sistema continuo senza diffusione soggetto ad un flusso termico in una certa direzione (x) e nello stesso tempo ad una reazione chimica. Relazioni fenomelogiche Se allora si ha cosicchè se L12≠0 la causa scalare produrrebbe un effetto vettoriale violando il Principio di Simmetria di Curie, secondo cui le cause macroscopiche hanno sempre meno elementi di simmetria degli effetti che producono. L'affinità chimica, quindi, non può produrre un flusso termico ed il coefficiente d'interferenza deve essere nullo. In casi come questi i due processi dànno contributi positivi separati alla produzione di entropia. Altro esempio. Anche nel caso del sistema chiuso con due regioni aperte visto precedentemente si avranno tre contributi irreversibili (senza interferenza ovvero non possono essere accoppiati). dovuto a fenomeno di ‘trasporto’ dalla fase I alla fase II reazioni chimiche nelle differenti fasi 20 (X) Processi irreversibili

(X) Processi irreversibili Interferenza di processi irreversibili Force Flow Fluid Heat Current Ion Dp DT Electric Field Dm Darcy's Law hydraulic conductivity termosmosis electrosmosis normal osmosis isothermal heat transfer Fourier's Law heat Peltier effect Dufour effect thermo- electricity Ohm's Law electric Diffusion and membrane potentials streaming current Soret effect thermal diffusion electro- phoresis Fick's Law diffusivity (X) Processi irreversibili

(X) Processi irreversibili pI pII Esempio: Connessione tra gli effetti elettrocinetici  I  II capillare o parete porosa potenziale elettrochimico affinità elettrochimica La produzione di entropia per il passaggio dei costituenti dal recipiente I al recipiente II a T e concentrazioni costanti si ricava dalla seguente relazione: I è la corrente elettrica per il trasferimento di carica da un recipiente all'altro. J è il flusso di materia o flusso risultante di volume. vg = volume molare della specie g 22 (X) Processi irreversibili

(X) Processi irreversibili Abbiamo due processi irreversibili, trasporto di materia (per il Dp) e di carica (per il D), inoltre, c'è anche un effetto incrociato (L12=L21≠0) dovuto all'interferenza dei due processi. Potenziale di flusso d.d.p. per unità di d.d.pressione a corrente elettrica nulla Elettro-osmosi flusso di materia per unità di corrente a pressione costante Eq. fenomenologiche Pressione elettro-osmotica d.d.pressione per unità di d.d.p. a flusso di materia nullo. Corrente di flusso flusso di corrente per unità di flusso di materia a d.d.p. nulla I quattro effetti irreversibili, possono essere studiati sperimentalmente in modo indipendente. La relazione di Onsager dà due collegamenti che mettono in relazione un effetto osmotico con un effetto di flusso. Relazione di Saxen La relazione di Saxen era stata stabilita applicando considerazioni cinetiche possibili solo se si adottano modelli semplificati per il diaframma di separazione (ad es. capillare a sezione costante). In realtà la derivazione termodinamica dimostra che tale relazione ha una validità del tutto generale. La termodinamica dei processi irreversibili rende possibile stabilire una correlazione tra effetti che apparentemente sembrano essere indipendenti. (X) Processi irreversibili

(X) Processi irreversibili Sistemi termodinamicamente equivalenti. La legge di trasformazione delle velocità è complementare a quella delle affinità in modo da mantenere invariante la produzione di entropia. Ad es., la reazione A→B→C può essere descritta, da un punto di vista macroscopico, con due leggi di trasformazione: 1) A→B e B→C 2) A→C e B→C (comb. lineari delle precedenti) Generalizzando. Ottenuta una certa relazione per la produzione di entropia (Xk e Jk) è possibile introdurre una nuova serie di affinità (X'k), che siano combinazioni lineari delle vecchie e scegliere una nuova serie di flussi (J'k) in modo tale che resti invariante la produzione complessiva di entropia. La descrizione in termini di (Xk,Jk) è macroscopicamente equivalente a quella in termini di (X'k,J'k). Spesso una particolare scelta può essere più conveniente di altre. Bisogna comunque sottolineare che l'invarianza della produzione di entropia è necessaria ma può non essere sufficiente e, in casi particolari, date combinazioni possono portare a risultati senza senso fisico (paradossi). (X) Processi irreversibili

(X) Processi irreversibili Stati stazionari di non-equilibrio (regione lineare) In uno stato stazionario le variabili di stato non dipendono dal tempo. Se, ad esempio, k affinità indipendenti (X1, X2,..., Xk) sono mantenute costanti, allora i flussi delle altre n-k (Jk+1, Jk+2, ..., Jn ) devono necessariamente annullarsi. Condizione di minimo nella produzione di entropia. La produzione per le k affinità rimane costante e si annulla per le altre n-k. Dimostrazione Lo stato stazionario rappresenta una condizione di stabilità quando il sistema è soggetto a forze esterne costanti: la produzione di entropia rimane costante nel tempo (ds/dt=0). L'evoluzione verso lo stato stazionario può essere descritto, quindi, da Analoga a dS0 per l'evoluzione verso lo stato di equilibrio di un sistema isolato L'indipendenza dal tempo negli stati stazionari vale, ovviamente, anche per l'entropia, per cui: Poiché (lo stato stazionario è comunque un processo irreversibile) dovrà essere: (X) Processi irreversibili

(X) Processi irreversibili Esempio di sistema chiuso con due regioni chiuse in stato stazionario. Ambiente: Serbatoi a TI e TII ( TI > TII). I II E' comunque un processo irreversibile = costante (invariante nel tempo) Il prelievo di calore a TI e la cessione dello stesso a TII (<TI) genera una diminuzione di entropia che compensa esattamente l'aumento dovuto a diSsist. Lo stato stazionario è un processo irreversibile per cui l'entropia dell'universo (sistema isolato) deve aumentare. Tale aumento è interpretabile nel senso di una degradazione del calore da una T più elevata ('pregiato') ad una più bassa. (X) Processi irreversibili

(X) Processi irreversibili Se il sistema è aperto la diminuzione di entropia (esterna) si può avere cedendo all'ambiente materia 'degradata' ed è proprio tale degradazione che mantiene lo stato stazionario. L'energia necessaria per sostenere questi processi è minima. (X) Processi irreversibili

(X) Processi irreversibili Variazione temporale della produzione di entropia Produzione di entropia Funzione di dissipazione Ipotesi: a) leggi fenomenologiche lineari; b) validità delle relazioni di reciprocità; c) coeff. fenomenologici costanti. Criterio generale di evoluzione Il contributo della variazione temporale delle forze termodinamiche alla produzione dell'entropia è negativo o nullo (in alternativa, si può asserire che la funzione di dissipazione non può dimunuire. L'espressione ottenuta non rappresenta un potenziale classico che implica la possibilità di dimenticare le condizioni iniziali. (X) Processi irreversibili

Principio della produzione massima di entropia La seconda legge della termodinamica asserisce che l'entropia di un sistema isolato non può diminuire (DS0). Tuttavia non dice nulla riguardo alle possibili trasformazioni che portano dallo stato iniziale a quello finale. A questa domanda risponde il principio della massima produzione di entropia: Un sistema termodinamico che passa da uno stato iniziale ad un altro stato durante la trasformazione seleziona, tra tutti quelli possibili, il percorso (o insieme di percorsi) che permetta di raggiungere, il più rapidamente possibile, la Massima Produzione di Entropia (MEP). Per la seconda legge , il MEP dice in più che s tende ad un massimo il più rapidamente possibile. (X) Processi irreversibili

Time reversed anti-trajectory The second law of thermodynamics, which predicts that the entropy of an isolated system out of equilibrium should tend to increase rather than decrease or stay constant, stands in apparent contradiction with the time-reversible equations of motion for classical and quantum systems. The time reversal symmetry of the equations of motion show that if one films a given time dependent physical process, then playing the movie of that process backwards does not violate the laws of mechanics. It is often argued that for every forward trajectory in which entropy increases, there exists a time reversed anti-trajectory where entropy decreases, thus if one picks an initial state randomly from the system's phase space and evolves it forward according to the laws governing the system, decreasing entropy should be just as likely as increasing entropy. It might seem that this is incompatible with the second law of thermodynamics which predicts that entropy tends to increase. The problem of deriving irreversible thermodynamics from time-symmetric fundamental laws is referred to as Loschmidt's paradox. (X) Processi irreversibili

(X) Processi irreversibili Fluctuation Theorem and Second Law Inequality The Fluctuation Theorem (FT), and in particular the Second Law Inequality, state that the probability of seeing its entropy increase is greater than the probability of seeing its entropy decrease. This means that as the time or system size increases (since A is extensive), the probability of observing an entropy production opposite to that dictated by the second law of thermodynamics decreases exponentially. The FT is one of the few expressions in non-equilibrium statistical mechanics that is valid far from equilibrium. However, one could also use the same laws of mechanics to extrapolate backwards from a later state to an earlier state, and in this case the same reasoning used in the proof of the FT would lead us to predict the entropy was likely to have been greater at earlier times than at later times. So, it seems that the problem of deriving time-asymmetric thermodynamic laws from time-symmetric laws cannot be solved by appealing to statistical derivations which show entropy is likely to increase when you start from a non-equilibrium state and project it forwards. Many modern physicists believe the resolution to this puzzle lies in the low-entropy state of the universe shortly after the big bang (?). A simple consequence of the FT the ensemble time average cannot be negative for any value of the averaging time t. This inequality is called the Second Law Inequality. This inequality can be proved for systems with time dependent fields of arbitrary magnitude and arbitrary time dependence. (X) Processi irreversibili

(X) Processi irreversibili Entropia e Disorganizzazione procedono di pari passo? La termodinamica è divenuta uno degli strumenti essenziali in biologia in seguito agli sviluppi della biochimica, che si è ampiamente servita della termodinamica chimica per la determinazione degli equilibri di reazione e di bilanci energetici. Le equazioni fenomenologiche lineari sono molto adatte per una descrizione in prima approssimazione del trasporto di materia associato alle reazioni metaboliche. Le applicazioni più importanti appaiono però quelle della termodinamica non lineare. I numerosi fenomeni oscillatori (dai ritmi circadiani alle oscillazioni nella glicolisi a livello epatico) rientrano pienamente nella descrizione delle reazioni chimiche oscillanti. Il modello di Lotka-Volterra è stato poi il capostipite di una quantità di modelli utilizzati in ecologia. Fondamentale poi la scoperta della possibilità di autorganizzazione di un sistema senza violare il secondo principio della termodinamica, che fornisce utili indicazioni sul problema dell'origine della vita. Un tentativo interessante di utilizzare la teoria dei cicli e delle biforcazioni per spiegare i fenomeni evolutivi a livello molecolare. Nella teoria degli ipercicli nei quali, appunto, certe sostanze che entrano in un ciclo primario partecipano anche a cicli secondari. Tali ipercicli possono essere stabili, replicarsi con eventuali errori e, in seguito a perturbazioni, anche evolvere bruscamente formando altre strutture organizzate. (X) Processi irreversibili

(X) Processi irreversibili Evoluzione del sistema nelle regioni non-lineari Lontano dall'equilibrio non valgono le relazioni lineari ed i coefficienti fenomelogici Lij dipendono a loro volta dalle forze. Le espressioni che correlano flussi e forze sono dette equazioni fenomenologiche non lineari e hanno la forma di uno sviluppo in serie di Taylor riferito all'ipotetico stato stazionario. L'evoluzione sotto l'azione di forze esterne costanti NON è più prevedibile e si possono presentare vari casi (relativi a sistemi in cui avvengono reazioni chimiche): 1) successione di OSCILLAZIONI smorzate; 2) il sistema muta ciclicamente nel tempo secondo un percorso detto CICLO LIMITE , disposto intorno allo stato stazionario; 3) la cinetica diventa CAOTICA; 4) l'interferenza tra cinetica chimica e processi diffusivi provoca la compartimentazione del sistema in strutture spaziali ordinate dette STRUTTURE DISSIPATIVE. (X) Processi irreversibili

(X) Processi irreversibili Per la funzione di dissipazione vale un ragionamento analogo a quello delle energie libere F e G. Se il processo è descritto da equazioni fenomenologiche lineari questa è minima allo stato stazionario: una fluttuazione comporta un aumento della funzione che tende a tornare al minimo nel tempo. Il minimo di dissipazione corrisponde a uno stato che si comporta da punto attrattore per il sistema e lo stato stazionario è stabile. Questo però è sempre vero quando le equazioni fenomenologiche sono lineari, cioè le forze generalizzate che sostengono il processo sono piccole (poco lontano dall'equilibrio). Quando ci si scosta notevolmente dalle condizioni di equilibrio le equazioni fenomenologiche non sono più lineari ed in conseguenza di una perturbazione può aversi un eccesso di produzione di entropia che rende instabile il sistema. La perturbazione iniziale, anziché smorzarsi, si amplifica. Ciò può condurre a una situazione interessante, nella quale lo stato del sistema oscilla con periodicità ben definita fra alcuni stati da cui viene periodicamente attratto. Si ha quindi un altro tipo di stabilità del sistema corrispondente a un attrattore periodico. La situazione è ben nota in chimica ed in idrodinamica. Il sistema si organizza producendo una struttura nello spazio o nel tempo che viene detta struttura dissipativa, essendo mantenuta con produzione di entropia. (X) Processi irreversibili

(X) Processi irreversibili Esempi noti sono le strutture termoconvettive di Bénard e la formazione di altre strutture periodiche nello spazio o nel tempo come i cirrocumuli, gli anelli di Liesegang e la reazione di Belousov-Zhabotinsky. Un'altra situazione importante è definita dal modello di Lotka-Volterra. Rayleigh-Bénard and Bénard-Marangoni convection In the case of two plates between which a thin liquid layer is placed, only buoyancy is responsible for the appearance of convection cells. This type of convection is called Rayleigh-Bénard convection. The initial movement is the upwelling of warmer liquid from the heated bottom layer.In case of a free liquid surface in contact with air also surface tension effects will play a role, besides buoyancy. It is known that liquids flow from places of lower surface tension to places of higher surface tension. This is called the Marangoni effect. When applying heat from below, the temperature at the top layer will show temperature fluctuations. With increasing temperature, surface tension decreases. Thus a lateral flow of liquid at the surface will take place, from warmer areas to cooler areas. In order to preserve a horizontal (or nearly horizontal) liquid surface, liquid from the cooler places on the surface have to go down into the liquid. Thus the driving force of the convection cells is the downwelling of liquid. Anelli di Liesegang (X) Processi irreversibili