Rappresentazione dei dati statistici I.P.S.S.C.T.P. “S.Pertini” CROTONE Rappresentazione dei dati statistici Autore: prof. Enrico Paniconi E-mail panic52@alice.it
Povero me!!! FREQUENZE ASSOLUTE 10 6 1 5 22 carattere Frequenze La FREQUENZA ASSOLUTA indica quante volte la MODALITÀ di un CARATTERE si ripete Colore capelli (carattere) N° persone (frequenza assoluta) Neri 10 Castani 6 Rossi 1 biondi 5 totale 22 carattere Frequenze assolute modalità Povero me!!!
FREQUENZE RELATIVE FREQUENZA RELATIVA Le FREQUENZE ASSOLUTE, di due distribuzioni di dati, anche della stessa specie, non sono confrontabili in quanto si riferiscono, in generale, ad un diverso numero di casi complessivi. Questo inconveniente viene superato introducendo il concetto di FREQUENZA RELATIVA La frequenza relativa di una certa modalità è data dal rapporto tra la frequenza assoluta di tale modalità ed il numero totale dei casi moltiplicato per 100: OSSERVAZIONE: Le frequenze relative non sono altro che RAPPORTI PERCENTUALI
CALCOLO DELLE FREQUENZE RELATIVE Consideriamo i dati presenti nella seguente tabella Colore capelli (carattere) frequenze assolute neri 10 castani 6 rossi 1 biondi 5 TOTALE 22 Calcolo FREQUENZE RELATIVE Colore capelli frequenze assolute relative % neri 10 45,46 castani 6 27,27 rossi 1 4,55 biondi 5 22,72 TOTALE 22 100
Ohhh.... MEDIA ARITMETICA SEMPLICE Consideriamo una distribuzione di DATI DIVERSI UNO DALL’ALTRO: La MEDIA ARITMETICA SEMPLICE è uguale alla somma dei dati divisa per n, cioè: Ohhh....
MEDIA ARITMETICA SEMPLICE Esempio di calcolo Un alunno nei tre compiti di matematica ha riportato i voti presenti in tabella. Calcolare la MEDIA ARITMETICA dei voti. COMPITO VOTO N° 1 7 N° 2 8 N° 3 6 TOTALE 21 Povero me!!! Dove: 21 = somma dei voti 3 = numero dei voti 7 = MEDIA ARITMETICA dei voti
I grafici statistici possono assumere varie forme a seconda del tipo di fenomeno che si studia. Tra i più diffusi ricordiamo: Ortogramma Aerogramma Istogramma Ideogramma
L’ortogramma è costituito da rettangoli di uguale base e di altezza proporzionale alla frequenza di ciascun dato
L’aerogramma si ottiene dividendo un cerchio in settori circolari aventi un angolo al centro proporzionale alle frequenze che rappresentano
L’istogramma consiste in un insieme di rettangoli adiacenti aventi aree proporzionali alla frequenza del dato statistico
L’ideogramma è un tipo di rappresentazione grafica che consiste nel rappresentare gli oggetti in esame mediante immagini stilizzate. Esempio
Se vogliamo rappresentare la densità di popolazione (numero di abitanti per km2) di alcune nazioni europee,possiamo servirci del seguente ideogramma.Un disco colorato rappresenta trenta abitanti.
Media aritmetica La media aritmetica di n numeri si calcola sommando gli n numeri e dividendo il risultato per n; è un valore di sintesi che riassume un insieme di dati; ha un preciso ambito di significatività; è una media ponderata cioè i numeri dell’insieme da sintetizzare pesano in misura frequenza con cui ricorrono. proporzionale alla
Altri valori di sintesi Moda o valore normale è il numero che è presente con maggior frequenza nell’insieme Mediana corrisponde al valore centrale della sequenza ottenuta disponendo in ordine crescente i numeri dell’insieme
Media aritmetica Se i voti riportati in una materia scolastica sono 3, 6, 4, 7, la loro media è: (3+6+4+7)/4 = 20/4 = 5 cioè media aritmetica = somma di tutti i dati numero dei dati Media aritmetica pesata = (somma dei dati per le loro frequenze) / (somma delle frequenze)
Si chiama moda di una distribuzione di frequenze il dato avente la massima frequenza. Esempio
Considerata la seguente tabella che mostra la distribuzione, secondo le età, dei 60 studenti che seguono un certo corso di studi , si ha che la moda è 21. Infatti questo è il termine (età) cui corrisponde la massima frequenza.
Si chiama mediana il dato di mezzo quando i dati stessi sono disposti in ordine. Ad esempio, per l’insieme dei dati numerici(già disposti in ordine crescente) 2, 5, 6, 9, 10 la mediana è 6
Parliamo di media, moda e mediana Consideriamo le più comuni misure utilizzate per interpretare i dati di un'indagine statistica Media aritmetica Ai 23 alunni di una classe è stato chiesto di indicare il tempo impiegato a raggiungere la scuola. le risposte sono riportate nella tabella seguente Alunno Tempo (min) A 20 B 12 C 3 D 7 E 5 F 6 G 15 H 5 I 10 L 4 M 7 N 5 O 6 P 9 Q 5 R 6 S 7 T 10 U 7 V 10 Z 5 X 18 Y 2 tot. 184 media 184:23=8 Il valore ottenuto è la media aritmetica dei tempi impiegati ed è dato dalla somma di tutti i tempi diviso il numero degli alunni.La media aritmetica di una serie di dati si ottiene sommando tutti i dati e dividendo il risultato per il numero di dati
Ordiniamo i dati già considerati come nella tabella seguente: Tempo (min) Frequenza 2 1 3 1 4 1 5 (moda) 5 6 3 7 4 9 1 10 3 12 1 15 1 18 1 20 1 La moda è il valore 5 poichè è quello che si presenta il maggior numero di volte.
Mediana Disponiamo ora in ordine crescente i 23 valori che indicano i tempi di percorrenza: 2-3-4-5-5-5-5-5-6-6-6-7-7-7-7-9-10-10-10-12-15-18-20 il valore che occupa il posto centrale, ovvero il dodicesimo posto è il 7. Tale valore rappresenta la mediana. nel caso in cui i valori siano in numero pari, si prendono i due valori centrali e se ne calcola la media aritmetica In definitiva abbiamo trovato tre valori significativi: 8 media aritmetica: ci dice quanto tempo impiegherebbe ciascun alunno se tutti impiegassero lo stesso tempo; 5 moda: ci dice qual è il tempo impiegato dal maggior numero di alunni; 7 mediana: ci dice che circa la metà degli alunni impiega meno di 7 minuti e circa la metà impiega più di 7 minuti. Pubblicato daClaudio Cennamoa08:00
I dati e le previsioni ovvero la Matematica dell’incertezza
Probabilità? L’incertezza è condizione normale quando occorre prendere decisioni siamo guidati quasi sempre da valutazioni di tipo probabilistico è un tentativo di matematizzare i processi inconsapevoli o intuitivi con cui attribuiamo una determinata probabilità ad un evento nasce su sollecitazione di giocatori d’azzardo nel 1600 Se moltiplichiamo x 100, la probabilità è espressa come rapporto percentuale
Probabilità che lanciando un dado venga il numero 2 …estraendo una carta da un mazzo di 40 carte questa sia un re se abbiamo lanciato 10 volte una moneta ottenendo testa, all’undicesimo lancio è più conveniente puntare su croce? E’ più facile indovinare l’ordine di arrivo in una gara a cui partecipano 4 atleti o indovinare la seconda lettera della trecentoquarantesima parola del terzo capitolo di un libro di lettura?