L'algebra di Boole e le sue applicazioni

Slides:



Advertisements
Presentazioni simili
Algebra Booleana Generalità
Advertisements

MULTIVIBRATORI BISTABILI
Algebra di Boole Casazza Andrea 3EA I.I.S. Maserati.
D. Menasce1 Queste trasparenze sono disponibili sul sito web dellautore: (selezionare lopzione COURSES) Queste.
Elaborazione dei segnali mediante circuiti analogici o digitali.
Informatica Generale Marzia Buscemi IMT Lucca
Simulazione del calcolo di due numeri binari
Algebra di Boole..
Algebra di Boole e Funzioni Binarie
Intelligenza Artificiale
(sommario delle lezioni in fondo alla pagina)
Algebra Booleana Capitolo 2.
Cap. II. Funzioni Logiche
Algebra di Boole.
Laboratorio ricerca-azione: Metodiche formative per adulti
Esercitazioni su circuiti combinatori
1 Università della Tuscia - Facoltà di Scienze Politiche.Informatica 2 - a.a Prof. Francesco Donini Condizioni ed istruzioni condizionali.
Analisi e sintesi di circuiti combinatori
Algebra di Boole ed elementi di logica
Algebra di Boole ed elementi di logica
Corso di Informatica (Programmazione)
IFTS2002 Acq. Dati Remoti: INFORMATICA
Reti Combinatorie: sintesi
Algebra di Boole.
Programmazione Corso di laurea in Informatica
Semantica per formule di un linguaggio proposizionale p.9 della dispensa.
Unità Didattica 1 Algoritmi
Algebra di George Boole
Algebra di Boole e sue applicazioni
Indice: L’algebra di Boole Applicazione dell’algebra di Boole
Reti Logiche Reti Logiche Corso di Architetture degli Elaboratori.
Algebra di Boole L’algebra di Boole è un formalismo che opera su variabili (dette variabili booleane o variabili logiche o asserzioni) che possono assumere.
Usare rappresentazioni di lunghezza fissa porta ad avere valori non rappresentabili: Overflow indica un errore nella rappresentazione del risultato in.
Prima e Seconda Forma Canonica
Algebra di Boole e Funzioni Binarie
Intelligenza Artificiale
Claudia Raibulet Algebra Booleana Claudia Raibulet
Introduzione ~ 1850 Boole - De Morgan – Schroeder ALGEBRA BOOLEANA
Diagramma degli stati che descrive il comportamento della rete.
Cassaforte Asincrona di Mealy
Algebra di Boole … logica matematica Progetto Eracle 2
Algebra di Boole.
INFORMATICA MATTEO CRISTANI. INDICE CICLO DELLE LEZIONI LEZ. 1 INTRODUZIONE AL CORSO LEZ. 2 I CALCOLATORI ELETTRONICI LEZ. 3 ELEMENTI DI TEORIA DELL INFORMAZIONE.
Algebra di Boole e Circuiti Logici
Linguaggi e Programmazione per l’Informatica Musicale
ELETTRONICA GEORGE BOOLE FUNZIONI LOGICHE Lezione N° 1
Algebra di Boole.
FONDAMENTI DI INFORMATICA
DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE Algebra di Boole ed elementi di logica Marco D. Santambrogio – Ver. aggiornata.
Algebra di Boole.
ARCHITETTURA DEI SISTEMI ELETTRONICI
Università degli studi di Parma Dipartimento di Ingegneria dell’Informazione Politecnico di Milano © 2001/02 - William Fornaciari Reti Logiche A Lezione.
Corso di Laurea in Ingegneria dell’Informazione
Algebra di Boole.
Fondamenti di Informatica1 Memorizzazione su calcolatore L'unità atomica è il bit (BInary DigiT) L'insieme di 8 bit è detta byte Altre forme di memorizzazione:
AUTRONICA13.1 Autronica LEZIONE N° 13 Algebra BOOLEANA Sistema matematico formaleSistema matematico formale Elementi, operazioni, postulatiElementi, operazioni,
Rappresentazione dell'informazione
A.S.E.6.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 6 Algebra BOOLEANA Sistema matematico formaleSistema matematico formale Elementi, operazioni,
Algebra di Boole L’algebra di Boole è un formalismo che opera su variabili (dette variabili booleane o variabili logiche o asserzioni) che possono assumere.
A.S.E.7.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 7 ALGEBRA BOOLEANA PostulatiPostulati Principio di dualitàPrincipio di dualità Teoremi fondamentaliTeoremi.
Rappresentazione in virgola mobile (floating-point) Permette di rappresentare numeri con ordini di grandezza molto differenti utilizzando per la rappresentazione.
A.S.E.9.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 9 Algebra BOOLEANA a due valori Sistema matematico formaleSistema matematico formale Elementi,
Rappresentazione dell'informazione 1 Se ho una rappresentazione in virgola fissa (es. su segno e 8 cifre con 3 cifre alla destra della virgola) rappresento.
Algebra di Boole.
Copyright © Istituto Italiano Edizioni Atlas
L’algebra della logica delle proposizioni
La tabella delle verità è un modo per rappresentare il comportamento di una funzione combinatoria La tabella delle verità ha due tipi di colonne: colonne.
ELEMENTI DI LOGICA del Prof. Giovanni Ianne
DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE Algebra di Boole ed elementi di logica Marco D. Santambrogio – Ver. aggiornata.
Logica di base e Conversione analogico-digitale Lezione 3 / Prima parte Gaetano Arena e.mail: 1.
Transcript della presentazione:

L'algebra di Boole e le sue applicazioni Pirini Ilario 3^ EA Istituto tecnico I.I.S. Maserati Progetto STARtrekking L'algebra di Boole e le sue applicazioni

Indice: L’algebra di Boole Applicazione dell’algebra di Boole Esercizi e test Approfondimenti e curiosità

Chi era George Boole? Boole George nasce il 2 novembre 1815 a Lincolnshire in Gran Bretagna. Sviluppò assieme ad Auguste De Morgan la logica matematica moderna e il metodo simbolico. Boole e De Morgan fondarono l'algebra della logica o algebra booleana. www.dizionarioinformatico.com

L’ algebra Booleana Contempla due costanti 0 e 1 (falso e vero) Corrispondono a due stati che si escludono a vicenda Possono descrivere lo stato di apertura o chiusura di un generico contatto o di un circuito a più contatti Si definiscono delle operazioni fra i valori booleani: AND, OR, NOT sono gli operatori fondamentali 1 www.dizionarioinformatico.com

L’operazione di AND Si definisce l’operazione di prodotto logico (AND): il valore del prodotto logico è il simbolo 1 se il valore di tutti gli operandi è il simbolo 1 00 = 0 01 = 0 10 = 0 11 = 1 1 00 01 1 1 1 10 11 www.wikipedia.org

L’operazione di OR Si definisce l’operazione di somma logica (OR): il valore della somma logica è il simbolo 1 se il valore di almeno uno degli addendi è il simbolo 1 0+0 = 0 0+1 = 1 1+0 = 1 1+1 = 1 1 0+0 0+1 1 1 1 1+0 1+1 www.wikipedia.org

La negazione NOT Si definisce l’operatore di negazione (NOT): l’operatore inverte il valore della costante su cui opera Dalla definizione… 0 = 1 1 = 0 0 = 0 1 = 1 www.wikipedia.org

La tabella di verità Dalle otto combinazioni si ottiene la tabella di verità della funzione logica Si può scrivere la funzione Y come somma logica di prodotti logici A B C Y 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 Y = ABC + ABC + ABC + ABC

Funzioni logiche Una variabile y è una funzione delle n variabili indipendenti x1, x2,…, xn, se esiste un criterio che fa corrispondere in modo univoco ad ognuna delle 2n configurazioni delle xi un valore di y Una rappresentazione esplicita di una funzione è la tabella di verità, in cui si elencano tutte le possibili combinazioni di x1, x2, …, xn, con associato il valore di y y = F(x1,x2,…,xn) x1 x2 y 0 0 0 0 1 1 1 0 1 1 1 1 y = x1+x2

La forma canonica Date tre variabili booleane (A,B,C), si scriva la funzione Y che vale 1 quando solo due di esse hanno valore 1 A B C Y 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0 Si può scrivere la funzione come somma logica delle configurazioni corrispondenti agli 1 Y = ABC + ABC + ABC Forma canonica: somma di prodotti (OR di AND)  tutte le funzioni logiche si possono scrivere in questa forma

Variabili binarie Una variabile binaria indipendente può assumere uno dei due valori 0 e 1 Date n variabili binarie indipendenti, la loro somma logica (OR) è x 1 x1+ x2+ …+ xn = 1 se almeno una xi vale 1 0 se x1= x2= …= xn = 0 www.wikipedia.org

AND e NOT con variabili binarie Date n variabili binarie indipendenti, il loro prodotto logico (AND) è La negazione di una variabile x è x1 x2 … xn = 0 se almeno una xi vale 0 1 se x1= x2= …= xn = 1 x = 0 se x = 1 x = 1 se x = 0 www.wikipedia.org

Configurazioni delle variabili Date n variabili binarie indipendenti x1, x2,…, xn, queste possono assumere 2n configurazioni distinte Una configurazione specifica è individuata univocamente da un AND (a valore 1) di tutte le variabili, dove quelle corrispondenti ai valori 0 compaiono negate Ad esempio per n=3 si hanno 8 configurazioni 000 001 010 011 100 101 110 111 x1x2x3 x1x2x3 010 www.wikipedia.org

Minterm Se in una configurazione una variabile compare con 1 si assume il valore diretto se invece compare con uno 0 si assume il valore negato. Prendendo una funzione in esempio scriveremo: y = x1x2x3 + x1x2x3 + x1x2x3 Ciascuno di questi prodotti si chiama MINTERM www.wikipedia.org

Minterm La funzione conoscendo la sua tabella di verità, potrà essere espressa sotto forma di somme di prodotti dei termini minimi. Se una funzione è direttamente espressa sotto forma di somme di minterm sarà possibile costruire la sua tabella di verità, mettendo 1 nelle configurazioni relative ai minterm, e 0 negli altri casi. www.wikipedia.org

y = (x1+x2+x3)· (x1+x2+x°3)· (x1+x°2+x°3)· (x°1+x°2+x3)· (x°1+x°2+x°3) Maxterm Dalla tabella di verità si può affermare ogni maxterm è la somma di tutte le variabili dirette o negate a seconda che la configurazione contenga 1 o 0. y = (x1+x2+x3)· (x1+x2+x°3)· (x1+x°2+x°3)· (x°1+x°2+x3)· (x°1+x°2+x°3) ossia sotto forma di prodotto di somme. Ciascuna delle somme chiama maxterm (termine massimo).

Applicazione dell’algebra di Boole ai circuiti digitali In questa presentazione l'algebra di Boole verrà utilizzata in un diagramma di flusso per rendere più intuitivo comprendere il funzionamento di quei semplici circuiti digitali che costituiscono la base dei computer. "esco se è bel tempo ed è caldo.“ "esco se è bel tempo o se è caldo". www.nemesi.net

Applicazione dell’algebra di Boole ai circuiti digitali Tenendo presente la seguente tabella possiamo verificare le due frasi Quindi avremo: "esco se è bel tempo ed è caldo”= AND "esco se è bel tempo o se è caldo“ = OR www.nemesi.net

Applicazione dell’algebra di Boole ai circuiti digitali Nel Primo caso la lampadina si accenderà quando: Nel secondo invece la lampadina si accenderà quando: A A Y Y B B A=0 B=0 www.nemesi.net A=0 B=1

Un esercizio Progettare un circuito per accendere e spegnere una lampada da uno qualsiasi di tre interruttori indipendenti A B C 1 Cambia lo stato di un interruttore qualsiasi Y = 0 Y = 1

Un circuito con due interruttori I due interruttori corrispondono a due variabili (A,B) a valori booleani  le variabili assumono i due valori 0 e 1 che corrispondono alle due posizioni dell’interruttore Y Y A B A B A 1 1 1 1 B A B A=0 B=0 A=0 B=1 Y Y A B A B 1 1 A B A 1 1 B Y = AB+AB A=1 B=0 A=1 B=1

Altre proprietà Per gli operatori AND e OR valgono le seguenti proprietà: Per l’operatore NOT si provano le seguenti identità: commutativa x1+x2 = x2+x1 x1 x2 = x2 x1 associativa x1+x2+x3 = x1+(x2+x3) x1 x2 x3 = x1(x2 x3) distributiva del prodotto rispetto alla somma x1 x2 + x1 x3 = x1(x2+x3) x + x = 1 x  x = 0 x = x

Mappe di KARNAUGH Le mappe di Karnaugh sono delle tabelle che permettono in modo immediato la rappresentazione e la semplificazione di funzioni booleane fino 6 variabili. xy 00 01 11 10 z 1 Rappresentazione con Mappa di K. di una funzione. Le Mappe di K. costituiscono un altro metodo per rappresentare una funzione booleana;

Analisi delle combinazioni Si considera cosa accade a partire dalla configurazione di partenza, cambiando lo stato di un interruttore per volta Y = 1 Y = 0 A B C A B C 1 1 1 Y = 1 Y = 0 A B C 1 Y = 1 Y = 0 A B C A B C A B C 1 1 1 1 1 Y = 1 Y = 0 A B C A B C 1 1 1

Fine