La Fisica del Microcosmo

Slides:



Advertisements
Presentazioni simili
Domizia Orestano Università Roma Tre Master Classes 9/3/2005
Advertisements

Corso di Chimica Fisica II 2011 Marina Brustolon
Tesina interdisciplinare
Gli Acceleratori e i Rivelatori di Particelle
Le Forme dello Spazio.
Particelle elementari
Viaggio attraverso le potenze di 10
protone o neutrone (nucleone)
Laboratori Nazionali di Frascati INFN
Modello Standard … e oltre Danilo Babusci INFN - Laboratori Nazionali di Frascati.
D. BabusciMasterClass 2007 Modello Standard … e oltre.
Fisica delle particelle e Modello Standard
Teoria delle stringhe Di Alex Dichirico.
Ricerca di tecnologia Di Alex Dichirico
Teoria delle stringhe Ricerca di tecnologia Di Alex Dichirico.
Istituzioni di Fisica Subnucleare A
Istituzioni di Fisica Subnucleare A
LA TERRA INCOGNITA DI LHC LA TERRA INCOGNITA DI LHC Antonio Masiero LIGNOTO LHC SPICCA IL SALTO VERSO LIGNOTO PADOVA, 19 GENNAIO 2010.
Benvenuti Particelle Elementari del Dipartimento di Scienze Fisiche
Il modello standard delle forze
QUARK E L’UNIFICAZIONE DELLE FORZE
Lezione 2 Caratteristiche fondamentali delle particelle: massa
G. Pugliese Biofisica, a.a Raggi cosmici Sono particelle e nuclei atomici di alta energia che, muovendosi quasi alla velocità della luce, colpiscono.
Il Sacro Graal dei fisici é.
Programma del Corso di Istituzioni di Fisica Nucleare e Subnucleare
1 Lezione 21 Interazione elettrodebole Modello Standard.
Ricostruzione delle tracce di muone nello spettrometro dell’esperimento ATLAS Il lavoro di questo tesi ha come oggetto la ricostruzione delle tracce di.
Perché LHC? Breve viaggio nella fisica delle particelle
Riassunto della lezione precedente
La fisica delle particelle a cura della prof.ssa Rosanna Garello
IL MODELLO STANDARD.
( con la collaborazione artistica di Laura Strolin )
Ed unificazione delle forze
Unita’ Naturali.
GRAVITONE E FOTONE PARENTI
Quark e decadimento beta -
I 65 anni che hanno portato al bosone di higgs
la scoperta del bosone di Higgs Chiara Mariotti INFN-Torino
Michelangelo Mangano Theoretical Physics Division CERN, Geneva PERCHE’ STUDIAMO LA FISICA DELLE PARTICELLE? Incontri LNF per gli insegnanti 2002.
Le forze della fisica ? Le forze della fisica ? Le forze della fisica ? Le forze della fisica ? Le forze della fisica ? Le forze della fisica ? Le forze.
Principi fisici di conversione avanzata (Energetica L.S.)
Particelle elementari
Masterclass 2011 L’esercizio Z ad ATLAS Lecce, 22 marzo 2011.
Viaggio nel mondo delle particelle
Introduzione al corso Fabio Bossi, Laboratori Nazionali di Frascati INFN.
Università degli Studi dell’Aquila
ScienzEstate 20/7/2006Piergiulio Lenzi Le frontiere della fisica subnucleare Elementi di Fisica LHC al CERN di Ginevra l’esperimento CMS Elementi di Fisica.
L’ATOMO struttura, particelle e legami
LHC: inizio di una nuova era
Modello Standard … e oltre. 7/20/2015 Liceo Farnesina Astrofisica Biologia Fisica Nucleare FdP Chimica.
IL BOSONE DI HIGGS Marzo 2014 Proff. Ricco e Parravicini.
Stato attuale della fisica delle particelle e problemi aperti
Una breve introduzione alla fisica delle particelle elementari
Il CERN Km di circonferenza 90m di profondità Collisioni p+p a 7+7 TeV 2.
1 L’HiggsL’Higgs Giorgio Chiarelli Istituto Nazionale di Fisica Nucleare Sezione di Pisa.
1 Introduzione alla fisica delle particelle ed al Modello Standard Giorgio Chiarelli Istituto Nazionale di Fisica Nucleare Sezione di Pisa.
2. Il Modello Standard del Microcosmo Ricerca del Bosone di Higgs a LHC Pergola Aprile Il Modello Standard (SM) è descritto nelle 3 diapositive.
Master Roma Tre1 Il Modello Standard Domizia Orestano Università Roma Tre Master Classes 10/3/2011.
Ricerca e scoperte - Esperienza, insegnamento, collaborazione – Tecnologia e innovazione Il laboratorio di fisica delle particelle più grande del mondo.
FISICA SUBNUCLEARE.
Il Modello Standard delle Particelle e delle Interazioni
MasterClasses 2016: Viaggio nel mondo delle particelle Lecce, 1 marzo 2016.
ESPERIMENTO MOLTO COMPLESSO Pierluigi Paolucci - Liceo Mercalli
Transcript della presentazione:

La Fisica del Microcosmo Fisica 24 ore La Fisica del Microcosmo Dalla Meccanica Quantistica al Modello Standard delle Particelle Elementari

Le due grandi rivoluzioni dell’inizio ‘900: Meccanica Quantistica Relatività Equazione di Dirac

positiva invece di negativa L’equazione di Dirac descrive correttamente le proprietà dell’elettrone Ma fa anche altro: Prevede l’esistenza di una particella sconosciuta, identica all’elettrone, ma con carica elettrica positiva invece di negativa Dirac prevede il positrone N.B. la MATEMATICA suggerisce la FISICA N.M.B. naturalmente, occorre controllare che sia vero!!!

La scoperta sperimentale del positrone Nel 1932 Carl Anderson verifica sperimentalmente la previsione di Dirac La curvatura (particella carica in campo magnetico) ci dice che è una particella con carica POSITIVA Forza di Lorentz

Di cosa siamo veramente “fatti”? Una miriade di nuove particelle Dopo il positrone i fisici cominciano a scoprire tantissime nuove particelle, diverse da quelle che costituiscono normalmente la materia (protone, neutrone ed elettrone): π, K, , , , , , ……….. etc etc etc Enrico Fermi: “Ragazzo, se io potessi ricordare il nome di tutte queste particelle sarei un botanico!” Ma allora: cosa significa FONDAMENTALE?? Di cosa siamo veramente “fatti”?

Esperimento: Teoria: È qualcun altro …uhmmmmm…. …UHMMMMMM…. È una foto Il problema della risoluzione: più in dettaglio guardate, più dettagli vedete Esperimento: Teoria: È qualcun altro …uhmmmmm…. …UHMMMMMM…. È una foto È un uomo È una MIA foto

Large Hadron Collider Ricordate  = h/p ? costante di Planck Ricordate  = h/p ? quantità di moto lunghezza d’onda Serve una grande energia per ottenere una piccola lunghezza d’onda ( = grande risoluzione) Large Hadron Collider Acceleratore protone-protone in costruzione al CERN. Pronto nel 2007 Energia ~ 2  7000 volte la massa del protone   ~ 10-18 m 27 km di circonferenza Costo ~ 2.2 miliardi di euro

(

LHC nella campagna franco-svizzera attorno al CERN SppS N.B. Il tunnel è completamente sotterraneo

Uno dei 4 apparati sperimentali di LHC…

……e la sua caverna.

Un ipotetico evento a LHC

)

1900 - 1930: poche particelle (protone, neutrone, elettrone) Elementari? 1930 - 1960: esperimenti -> tantissime particelle Grande confusione!! 1960 - 1970: inizia ad emergere un ordine (quark, leptoni, 4 forze) 1970 - ????: il Modello Standard

I leptoni Tre famiglie, ognuna contenente un “elettrone” e un neutrino Neutrino: introdotto da Wolfgang Pauli ed Enrico Fermi per preservare la conservazione dell’energia nel decadimento beta del neutrone Muone: particella identica all’elettrone, eccetto che per la massa, 200 volte maggiore Tre famiglie, ognuna contenente un “elettrone” e un neutrino I.I. Rabi: “Il muone, ma chi l’ha chiesto?”

I quark Murray Gell-Mann “Three quarks for Muster Mark ” J. Joyce, Finnegan’s Wake Up e down costituiscono la materia ordinaria (p = uud, n = udd) Gli altri (“Ma chi li ha chiesti?”) compongono tutte le altre particelle osservate

Le 4 forze (= interazioni) Intensità 10-38 10-5 10-2 1 Ogni forza è trasportata da una specifica particella Carlo Rubbia e Simon van der Meer Premio Nobel per la Fisica 1984 per la scoperta al CERN di Ginevra dei bosoni vettori W e Z, portatori della forza debole

Il Modello Standard “riassunto” delle attuali conoscenze circa la fisica delle interazioni fondamentali: individua le particelle fondamentali individua le forze fondamentali (e.m., debole, forte) detta le regole attraverso cui le particelle interagiscono tramite le forze (esempio: conservazione della carica elettrica) permette di effettuare previsioni teoriche confrontabili con gli esperimenti

Il Modello Standard QED Interazioni elettrodeboli Premio Nobel per la Fisica 1965 ( www.nobel.se/physics/laureates/1965/ ) Richard P. Feynman Julian Schwinger Sin-Itiro Tomonaga Interazioni elettrodeboli Premio Nobel per la Fisica 1979 ( www.nobel.se/physics/laureates/1979/ ) Sheldon Lee Glashow Abdus Salam Steven Weinberg E le interazioni forti (QCD)?? Niente Nobel per ora!

Dimensioni Lo spazio è quasi totalmente vuoto! Se l’atomo fosse un campo da calcio (100 m), il nucleo sarebbe una biglia (1 cm) Lo spazio è quasi totalmente vuoto! Sono le forze che “creano” la solidità degli oggetti

Distanze Perché la gravità e l’elettromagnetismo ci sono familiari, mentre non sapevamo nulla della forza debole e di quella forte? Perché hanno raggio d’azione INFINITO, mentre le forze debole e forte sono confinate a BREVI DISTANZE

Un esempio di interazione tra particelle elementari Elettrone e positrone si scontrano. La forza elettrodebole produce un charm e un anticharm Il charm e l’anticharm si allontanano. La forza forte fa nascere un down e un antidown, e li lega a charm e anticharm per formare le particelle osservabili D

Nel campo di forze che si crea nascono nuovi quark, che La forza forte è speciale: CRESCE allontanando le particelle Nel campo di forze che si crea nascono nuovi quark, che si legano ad altri e formano le particelle osservate Non possiamo mai osservare i quark singolarmente.

…ma allora sappiamo già tutto?

Il bosone di Higgs Il Modello Standard prevede una particella tuttora sconosciuta, il bosone di Higgs L’Higgs è necessario affinché i quark, i leptoni, le particelle che trasportano le forze abbiano una MASSA O almeno…… così dice il Modello Standard È per verificarlo sperimentalmente che si costruisce l’LHC

Se vi interessa, siete in tempo!! Ricordate: LHC non sarà pronto prima del 2007 ci vorranno alcuni altri anni per raccogliere dati non è detto che ci sia solo il bosone di Higgs da scoprire Se vi interessa, siete in tempo!!