Cetraro, ottobre 2012 Relatrice: Claudia Manotti.

Slides:



Advertisements
Presentazioni simili
Geometria Euclidea e Geometria non Euclidea
Advertisements

Algoritmi e Strutture Dati
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati (Mod. B)
Come possono essere classificati?
LS Tron Classe 4TC – as 2006/07 LORGANIZZAZIONE DEI PROGRAMMI UD. 8 p. 282.
Capitolo 8 Sistemi lineari.
Modulo di Comunicazione Mirko Tavosanis
3. Processi Stocastici Un processo stocastico è una funzione del tempo i cui valori x(t) ad ogni istante di tempo t sono v.a. Notazione: X : insieme di.
Algoritmi e Dimostrazioni Stefano Berardi
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Le Variabili Casuali Corso di Teoria dell’Inferenza Statistica 1
Identificazione delle attività
Algoritmi e strutture Dati - Lezione 7
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 12 Minimo albero ricoprente: Algoritmi di Prim e di Borůvka Algoritmi.
Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
EQUAZIONI DI PRIMO GRADO
Algoritmi e Strutture Dati (Mod. B)
Algoritmi e Strutture Dati (Mod. A)
Algoritmi e Strutture Dati (Mod. B)
Algoritmi e Strutture Dati (Mod. B)
Algoritmi e Strutture Dati III. Algoritmi di Ordinamento
Modelli simulativi per le Scienze Cognitive Paolo Bouquet (Università di Trento) Marco Casarotti (Università di Padova)
Modelli simulativi per le Scienze Cognitive
Algoritmi e Strutture Dati
Analisi dei gruppi – Cluster Analisys
I numeri by iprof.
Esercizi 4 Soluzioni Calcolo combinatorio.
Il Cerca – costellazioni
Polinomi Definizioni Operazioni Espressioni Esercizi
CORSO DI CRITTOGRAFIA Quinto incontro PROGETTO LAUREE SCIENTIFICHE
TURBOPASCAL …. ripassiamo - prof. V. Riboldi -.
Cerchiamo di rispondere alla seconda domanda 2)La soluzione trovata con lalgoritmo goloso è ottima o esistono anche soluzioni con più di quattro attività?
Ispezione lineare La funzione hash h(k,i) si ottiene da una funzione hash ordinaria h'(k) ponendo L’esplorazione inizia dalla cella h(k,0) = h'(k) e continua.
Esecuzione dei programmi Prolog Liste ed operatori aritmetici
Teorie e Tecniche di Psicometria
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 12 Minimo albero ricoprente: Algoritmi di Prim e di Borůvka Algoritmi.
Facoltà degli studi umanistici.
L’Autenticazione Federata Settembre  FedERa è l’infrastruttura di Regione Emilia Romagna per l’autenticazione federata.  Attraverso FedERa tutte.
TURBOPASCAL …. ripassiamo - prof. V. Riboldi -.
LA MATEMATICA ALLA SCUOLA DELL’INFANZIA
Alberi CORDA – Informatica A. Ferrari Testi da
Galois gioca con il cubo di Rubik
Ordinamento e Operazioni su Strutture Dati Fabio Massimo Zanzotto.
Capitolo 6 Alberi di ricerca Algoritmi e Strutture Dati.
Risoluzione delle collisioni con indirizzamento aperto Con la tecnica di indirizzamento aperto tutti gli elementi stanno nella tavola. La funzione hash.
Capitolo 13 Cammini minimi: Ordinamento topologico Algoritmi e Strutture Dati.
Lo strano mondo degli algoritmi di ordinamento Algoritmi.
Claudio Arbib Università dell’Aquila Ricerca Operativa Metodo del simplesso per problemi di distribuzione single-commodity.
Rappresentazione dell'informazione
1 Un esempio con iteratore: le liste ordinate di interi.
Conversione binario-ottale/esadecimale
Didattica e Fondamenti degli Algoritmi e della Calcolabilità Sesta giornata Risolvere efficientemente un problema in P: Il problema dell’ordinamento: Insertion.
Le funzioni.
6. LIMITI Definizione - Funzioni continue - Calcolo dei limiti
Strutture di controllo
Triennio 1Preparazione giochi di Archimede - Triennio.
DEFINIZIONE. La potenza di un numero è il prodotto di tanti fattori uguali a quel numero detto base, quanti ne indica l’esponente. La potenza di un numero.
“si scrive screening, si legge prevenzione dei tumori”
Probabilità Definizione di probabilità La definizione di probabilità si basa sul concetto di evento, ovvero sul fatto che un determinato esperimento può.
Algebra e logica Ragionare, simbolizzare, rappresentare.
I numeri relativi DEFINIZIONE. Si dicono numeri relativi tutti i numeri interi, razionali e irrazionali dotati di segno (positivo o negativo). ESEMPI Numeri.
Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento.
Dalle potenze ai numeri binari
Transcript della presentazione:

Cetraro, ottobre 2012 Relatrice: Claudia Manotti

Il ministero In un certo ministero ci sono 6 uffici, numerati da 1 a 6, ai quali gli utenti si possono rivolgere per sbrigare un certo tipo di pratiche. Allinizio di ogni settimana un Dirigente del Ministero incontra i responsabili dei 6 uffici per organizzare il lavoro. Lorganizzazione avviene in questo modo: il Dirigente scrive i numeri da 1 a 6 su sei bigliettini e li distribuisce a caso ai sei responsabili. Durante la settimana quando un utente si presenterà allufficio k, verrà da questo ufficio invitato a recarsi presso lufficio il cui numero che indicheremo con a k, è scritto sul foglietto (nel caso in cui dovesse essere a k = k, lutente sarà invitato a ripassare più tardi, ad esempio perché il responsabile è fuori stanza). Naturalmente, quando lutente si presenterà al nuovo ufficio la procedura si ripeterà identica fino a quando lutente, sfinito, non se ne andrà.

In quanti modi può essere avvenuta la distribuzione dei biglietti?

Qual è la probabilità che un utente ripassi dal primo ufficio che ha visitato dopo 2 passaggi (e non prima)?

Considerazioni preliminari 1)Ritroviamo il primo elemento? 2) Notazioni con cicli. 3) Probabilità un sesto.

Esercizio Si riesce nelle scritture del tipo (*) a riordinare i cicli o gli elementi nei cicli in modo tale che anche togliendo le parentesi si possa risalire in modo univoco alla permutazione?

Deduciamo: 1)Qual è la probabilità che se lutente X parte dallufficio x 1 si trovi di nuovo x 1 al quattordicesimo passaggio? 2)Qual è la probabilità che X visiti prima o poi tutti gli uffici?

Qual è la probabilità che X, partendo dallufficio 1, non passi mai dal 2?

Qual è la probabilità che permutando i numeri da 1 a 6 il numero 1 preceda il 2? Qual è la probabilità che il 4 non venga a trovarsi prima dell1, del 2 e del 3?

Il Ministero, per dimostrare la propria sensibilità alle esigenze dei cittadini, ha deciso che tutti gli uffici che un utente incontrerà sul suo percorso debbano essere contrassegnati con uno stesso colore. Naturalmente si farà in modo di usare il massimo numero possibile di colori diversi. Qual è la probabilità che servano esattamente due colori? E che ne servano p?

a)(1+1/2+…+1/5)/6 b)…

a.[1/1+1/2+…+1/(n-1)](n-1)! b.Proprietà dei numeri di Stirling.

Triangolo di Stirling

Verificare la seguente uguaglianza:

I colori che contrassegnano gli uffici del ministero vengono cambiati ogni settimana in corrispondenza della distribuzione dei biglietti da parte del Dirigente. Mediamente, quanti sono i colori che servono? 1+1/2+…+1/n

In quanti modi può essere avvenuta la distribuzione dei biglietti nei seguenti due casi? a. Ogni colore utilizzato è stato usato per contrassegnare almeno due uffici. b.Cè esattamente un ufficio che ha un colore che non è usato da nessun altro.

In quanti modi può essere avvenuta la distribuzione dei bigliettini se si sa che qualunque sia lufficio visitato per primo da un utente, questi, rimbalzando da un ufficio allaltro visita sempre esattamente due uffici? Questo problema, posto in un insieme di cardinalità 2n ha come risultato:

Sei utenti arrivano contemporaneamente ed ognuno si rivolge ad un ufficio diverso. Qual è la probabilità che dopo due passaggi ognuno si ritrovi nel primo ufficio che ha visitato?

Per nominare i dirigenti delle varie sezioni del ministero si procede in questo modo: una volta che un dirigente è stato assunto, egli ha la possibilità di far assumere in qualità di dirigente altre due persone (al massimo), un uomo e una donna. Ogni volta che un nuovo dirigente viene assunto, al ministero viene costituita una nuova sezione che egli possa dirigere e queste sezioni sono numerate in modo progressivo. Il dirigente della sezione numero 1 è stato nominato direttamente dal Ministro. Sapendo che ogni dirigente obbedisce solo a colui che lo ha fatto assumere, quante diverse relazioni di fedeltà si possono realizzare nel ministero?

Gli alberi binari crescenti aventi per nodi tutti gli elementi dellinsieme sono in corrispondenza biunivoca con le permutazioni dellinsieme stesso.

In quanti modi può essere avvenuta la distribuzione dei biglietti in modo che scegliendo tre elementi da sinistra a destra nella sestupla non si trovino mai nellordine medio, maggiore, minore?

Ringraziamenti Carlo Benassi Carla Tedeschi Gabriele De Falco Beatrice

Bibliografia G. Paolini LA MATEMATICA DELLE OLIMPIADI, LA SCUOLA (2012) S. Campigotto PROGETTO PHIQUADRO, MATHESIS A.T. Benjamin, J. Quinn PROOFS THAT REALLY COUNT, THE MATHEMATICAL ASSOCIATION OF AMERICA (2003) A. Gardiner THE MATHEMATICAL OLYMPIAD HANDBOOK, OXFORD UNIVERSITY PRESS (1997) T. Andreescu, J. Feng A PATH TO COMBINATORICS FOR UNDERGRADUATE,SBIRKHAUSER (2003) Richard P. Stanley Enumerative Combinatorics vol 1. Cambridge Univ. Press (1997)