Scienza, produzione e immagine pubblica

Slides:



Advertisements
Presentazioni simili
La fissione nucleare compie 70 anni ( ) Sala delle Mimose, CRE Casaccia, 26 novembre 2008 ore 10:00 Fritz Strassmann ( ) Lise Meitner ( )
Advertisements

LE PROTEINE.
Farmacodinamica La farmacodinamica studia gli effetti biochimici e il meccanismo d’azione dei farmaci identificare i siti d’azione dei farmaci delineare.
Il favoloso viaggio alla scoperta del DNA
Breve storia dei modelli atomici
Liceo Scientifico-Classico
Progetto genoma umano Il genoma tappe dello studio del genoma umano
La struttura dell’atomo
DNA --> RNA --> Proteine
Fisica dei Materiali I 1.1) Epoche (culture)  materiali
Università di Catania Facoltà di Scienze MM FF NN Laurea Specialistica in Chimica Curricula: Chimica dei Materiali Chimica per le Tecnologie Agroalimentari.
Un passo indietro… Johan Friedrich Miescher (1844 – 1895) è stato un biologo svizzero, che isolò per la prima volta gli acidi nucleici. Egli evidenziò.
Edwin Chargaff Scopre che la quantità di DNA varia da un organismo allaltro ma……… RESTA COSTANTE IL RAPPORTO: ADENINA – TIMINA CITOSINA - GUANINA.
CHIMICA ANALITICA INTRODUZIONE
Come sono sistemate le particelle all’interno dell’atomo?
La parabola dell’urbanistica italiana dal 1942 a oggi
Dalle densità di sostanze gassose alle loro masse molecolari relative
La chimica : scienza sperimentale e quantitativa
I MATERIALI DELLA VITA A CURA DI ILENIA CUCINOTTA 2I.
Le biotecnologie IN QUESTO NUMERO => Cosa sono le biotecnologie?
Storia e insegnamento della fisica quantistica
Vivente : entità genetica organizzata, caratterizzata da metabolismo,
Corso di Laurea in Ingegneria Aerospaziale A. A
UN DISEGNO PER LA CHIMICA
La Scoperta del DNA La scoperta di Watson e Crick che ha rivoluzionato il mondo delle scienze.
La biologia (da bios = vita e logos = conoscenza, studio)
La teoria atomica della materia
O G M RGANISMI ENETICAMENTE ODIFICATI Prof. Rossella Menna
Crisi della fisica classica
Concetti di base nella chimica degli esseri viventi
L’atomo di idrogeno Elena Dalla Bonta’ Dipartimento di Astronomia
Oltre la Fisica Classica: Evidenze Sperimentali di
Funzione, struttura e replicazione del DNA
DNA --> RNA --> Proteine
la materia vista sotto "una luce diversa"
Acidi nucleici e proteine
Copyright The McGraw-Hill Companies srl Disoccupazione, inflazione e crescita Capitolo 15.
Chi di voi sa che cosa è : Un acido o una base la plastica Anfetamine Moment 2000 lo zucchero Popper la saccarina il DNA La benzina Ecstasy i ferormoni.
Il materiale ereditario
Le PROTEINE o PROTIDI I protidi o proteine sono composti quaternari in quanto formati essenzialmente da 4 elementi: C (carbonio), H (idrogeno), O (ossigeno)
Laboratorio di Metodo di Studio
Fondamenti di Bioinformatica e di Biologia di sistemi (c.i. 18 CFU)
Il DNA è il materiale ereditario e non le proteine Pneumococco
Simulazioni su scala atomica di biomolecole.
COME E’ FATTA LA MATERIA?
DNA: The life molecule La ricerca del materiale genetico (da Eissman a Hershey e Chase) La struttura del DNA (da Chargaff a Watson e Crick) Le funzioni.
Teoria Cellulare La cellula è l’unità strutturale e funzionale della materia vivente Tutti gli organismi viventi sono costituiti da una o più cellule*
Caratterizzazione di Proteine
Modelli della Fisica.
Pietro Ferraro.
BIOCHIMICA “La chimica della vita.”.
Sulle tracce del DNA Le tappe che hanno portato a identificare nel DNA il materiale ereditario FilmatoDownloads\James Watson racconta Watson e Crick -
Il carbonio è l’elemento di base delle biomolecole
La struttura del DNA.
Pagina web
RNA nucleotidi polimerizzazione filamento singolo traduzione proteine differenze e analogie.
La materia è qualsiasi cosa abbia una massa e occupi uno spazio. Esiste in tre stati: Solido Forma e volume determinati Gas Forma non rigida e volume.
VADEMECUM di CHIMICA Classi prime.
Alla scoperta del DNA... Storico Federico Lombardo.
UD 3 ACIDI NUCLEICI Zuccheri, basi azotate e loro suddivisione nel DNA ed RNA Fase I.
Mario Rippa La chimica di Rippa primo biennio.
STEREOCHIMICA ORGANICA. 6 CFU/48 ore LEZIONI FRONTALI ALLA LAVAGNA/POWER POINT ESAME: ORALE RICEVIMENTO: SU APPUNTAMENTO PRESSO STUDIO.
Transcript della presentazione:

Scienza, produzione e immagine pubblica Lo sviluppo ineguale della chimica del ‘900 Luigi Cerruti lcerruti@ch.unito.it http://minerva.ch.unito.it

Un tempo suddiviso in più tempi Scienza, produzione e immagine pubblica Un tempo suddiviso in più tempi è ridicolo ipotecare il tempo e lo è altrettanto immaginare un tempo suddiviso in più tempi. E. Montale, “È ridicolo credere” 1968

Scienza & Società Tre componenti Conoscenza scientifica Produzione materiale Immagine pubblica

Prima parte: quasi una cronologia Scienza, produzione e immagine pubblica Prima parte: quasi una cronologia  Chimica e fisica dell'atomo, 1900-1918  Chimica e chimica-fisica della struttura, 1918-1945  Mutazione e travestimento, 1945-1975  Chimica della complessità, 1975-2000

Seconda parte: quasi una analisi storica Scienza, produzione e immagine pubblica Seconda parte: quasi una analisi storica  Trompe l'œil: struttura vs. reattività, ovvero O/I  Quantità e qualità nella produzione industriale  L'immagine della chimica: due o tre crisi  Osservazioni finali

Chimica e fisica dell'atomo 1900-1918 Scienza, produzione e immagine pubblica Chimica e fisica dell'atomo 1900-1918 Modelli atomici Trasmutazione degli elementi Isotopia Ovviamente c’è anche altro

Chimica e fisica dell'atomo, 1900-1918 I modelli atomici e del legame Scienza, produzione e immagine pubblica Chimica e fisica dell'atomo, 1900-1918 I modelli atomici e del legame Il modello di Thomson, 1904 Il modello di Abegg, 1904 Il modello di Rutherford, 1911 Il modello di Bohr, 1913 Il modello di Lewis, 1916: atomo e legame

Scienza, produzione e immagine pubblica Il modello di Thomson, 1904 Corpuscoli in movimento su orbite circolari Trattazione fisico-matematica Decine di migliaia di corpuscoli Deduzione della periodicità Legame polare Prova di scrittura

Il modello di Rutherford, 1911 Scienza, produzione e immagine pubblica Il modello di Rutherford, 1911 Un nucleo con possibili masse minori come satelliti Concepito dopo l’acquisizione di una nuova base sperimentale Instabile secondo la fisica classica Si fonda esclusivamente sui dati sperimentali

Il modello di Bohr, 1913 Il primo modello quantistico Calcola il raggio dell’atomo di idrogeno Calcola la costante di Rydberg Le configurazioni elettroniche sono ‘aggiustate’ in base alle proprietà chimiche Il legame chimico è dato da un numero variabile di elettroni

Il modello di Lewis, 1916 L’elettrone e il legame chimico Scienza, produzione e immagine pubblica Il modello di Lewis, 1916 L’elettrone e il legame chimico Un modello assiomatico: regole, non calcoli Un modello statico Il legame chimico è dovuto ad una coppia di elettroni L’accoppiamento degli elettroni giustifica la configurazione tetraedrica dei legami dell’atomo di carbonio

La biochimica, 1900-1918 Nuove funzioni, nuovi oggetti molecolari Scienza, produzione e immagine pubblica La biochimica, 1900-1918 Nuove funzioni, nuovi oggetti molecolari Enzimi e reattività I messaggeri chimici: gli ormoni In absentia: le vitamine La biochimica del ‘900 ha origine da tre campi di ricerca in buona parte disgiunti. Per primi sono caratterizzati gli enzimi, come agenti del metabolismo cellulare. Un’interazione complessa all'interno della medicina, fra pratica terapeutica e indagine patologica, porta a definire gli ormoni. Epidemiologia e chimica affrontano gravi patologie e scoprono le vitamine.

Chimica e chimica-fisica della struttura 1918-1945 Scienza, produzione e immagine pubblica Chimica e chimica-fisica della struttura 1918-1945 Chimica organica fisica Chimica quantistica Chimica macromolecolare Biochimica La chimica fisica e la sua strumentazione

Chimica organica fisica 1918-1945 1924- 1926 R.Robinson, durante una dura polemica con Ingold, descrive gli effetti di mobiltà elettronica 1934 C.K.Ingold pubblica i Principles of an Electronic Theory of Organic Reactions anni 1930 Ingold e Hughes: cinetica e meccanismi di reazione 1940 L.P.Hammett pubblica Physical Organic Chemistry

Scienza, produzione e immagine pubblica Chimica quantistica Alla teoria degli orbitali molecolari contribuisce J. E. Lennard-Jones. Nel 1935 Mulliken definisce il metodo come LCAO. Il calcolo delle superfici di energia potenziale viene proposto da London nel 1928.

R. S. Mulliken, 1931 “il fatto che gli elettroni di valenza quasi sempre si presentino a coppie nelle molecole sature sembra, dopo tutto, che non abbia nessuna connessione fondamentale con l’esistenza del legame chimico” La presunzione di Dirac e di quanti volevano ‘ridurre’ la chimica alla fisica, o alla chimica-fisica, è rimasta nel regno del wishful thinking. L’autonomia epistemologica della chimica non è dovuta a pretese disciplinariste dei chimici, ma alla complessità del livello ontologico di riferimento, che impone l’uso di concetti -come quello di struttura- che sono irrimediabilmente indigeribili dalla meccanica quantistica

Chimica macromolecolare Scienza, produzione e immagine pubblica Chimica macromolecolare

Scienza, produzione e immagine pubblica Biochimica 1918-1945 La preparazione dell’insulina Un successo terapeutico ed economico straordinario Il ciclo di Krebs Gli ormoni corticosurrenalici

La chimica fisica e la sua strumentazione 1918-1945 Scienza, produzione e immagine pubblica La chimica fisica e la sua strumentazione 1918-1945 Strutturistica con i raggi X Le spettroscopie vibrazionali Spettrometria di massa Misure di momenti di dipolo Polarografia

Mutazione e travestimento, 1945-1975 Scienza, produzione e immagine pubblica Mutazione e travestimento, 1945-1975 Cromatografia ed elettroforesi La trasformazione del laboratorio organico La biologia molecolare, biochimica travestita * * * La chimica quantistica diventa chimica teorica Termodinamica delle strutture dissipative ( caos chimico)

Cromatografia ed elettroforesi Scienza, produzione e immagine pubblica Cromatografia ed elettroforesi 1941 Martin e Synge, cromatografia di partizione 1944 Consden, Gordon e Martin, cromatografia su carta 1948-1950 elettroforesi su carta 1952 James e Martin, gas-cromatografia 1953 Grabar e Williams, elettroforesi su agar, immuno-elettroforesi 1958 Stahl presenta il Grundausrüstung per la cromatografia su strato sottile La cromatografia su carta e le diverse tecniche di elettroforesi furono applicate alla separazione delle proteine e dei peptidi. I risultati sconvolsero interi settori della biologia: genetica umana genetica delle popolazioni teoria dell’evoluzione

La trasformazione del laboratorio organico 1945-1975 In una generazione, dopo la seconda guerra mondiale, sono stati introdotti strumenti che hanno modificato profondamente i cardini stessi dell’affermazione professionale di un chimico organico. L’analisi elementare è stata automatizzata. IR, UV, NMR, cromatografie, GC-MS hanno grandemente semplificato il compito di determinare la struttura dei composti. Il chimico organico dimostra la sua eccellenza nell’arte della sintesi.

La biologia molecolare, 1945-1975 mostly biochimica travestita Scienza, produzione e immagine pubblica La biologia molecolare, 1945-1975 mostly biochimica travestita 1950 Chargaff determina nel DNA il rapporto 1.1 fra adenina e timina, e fra guanina e citosina 1955 Sanger determina la sequenza dell’insulina 1957 Ingram individua la causa molecolare dell’anemia falciforme 1961 Braunitzer determina la sequenza dell’emoglobina 1953 Watson e Crick propongono la struttura a doppia elica del DNA 1956-1960 Perutz determina la struttura tridimensionale dell’emoglobina 1958-1960 Kendrew determina la struttura tridimensionale della mioglobina

Verso la chimica della complessità, 1975-2000 Scienza, produzione e immagine pubblica Verso la chimica della complessità, 1975-2000 Chimica supramolecolare Chimica combinatoriale Chimica computazionale Caos chimico La questione ambientale*

Distruzione dell’ambiente vs. chimica dell’ambiente Scienza, produzione e immagine pubblica Distruzione dell’ambiente vs. chimica dell’ambiente 1962 Rachel Carson, Silent Spring 1965-70 L’agent orange, 80.000 t sul Vietnam 1976 L’incidente di Seveso 1984 40 t di metilisocianato su Bhopal 1985 Inizia il programma Responsible Care 1985 Il “buco dell’ozono” descritto su Nature L’agent orange era costituito da una miscela in parti eguali di acido dicloro e tricolorofenossiacetico. Conteneva come impurezza tetraclorodibenzodiossina. Stati Uniti: 1965, Water Quality Act 1970, Clean Air Act 1970, Occupational Safety & Health Act 1972, Federal Insecticide Fungicide & Rodenticide Act 1974, Safe Drinking Water Act 1976, Resource Conservation & Recovery Act 1976, Toxic Substances Control Act

Difesa dell’ambiente Legislazione negli Stati Uniti 1965, Water Quality Act 1970, Clean Air Act 1970, Occupational Safety & Health Act 1972, Federal Insecticide Fungicide & Rodenticide Act 1974, Safe Drinking Water Act 1976, Resource Conservation & Recovery Act 1976, Toxic Substances Control Act

Chimica supramolecolare Scienza, produzione e immagine pubblica Chimica supramolecolare 1967 Il blockbuster di C. J. Pedersen, gli eteri corona 1969 J.-M. Lehn, i criptati 1973 D. J. Cram, host e guest 1977 Congresso IUPAC, Tokyo Lehn propone il termine: chimica supramolecolare Riconoscimento molecolare Auto-replicazione: oligonucleotidi, micelle Auto-organizzazione: mesofasi tubulari, recettori fotosensibili, interruttori Nanotecnologie Pedersen nasce nel 1904 Jean-Marie Lehn nacque il 30 settembre 1939 Donald J. Cram nasce nel 1919 Il Nobel per la chimica 1987 1960, Richard Feynman: there's plenty of room at the bottom 1995, Jean-Marie Lehn: there's even more room at the top

Chimica combinatoriale Scienza, produzione e immagine pubblica Chimica combinatoriale 1963 R. B. Merrifield, sintesi di peptidi in fase solida 1985-1988 Librerie di cloni mutanti 1991 Seminario di Á. Furka a Tucson, Arizona Merrifield prende il Nobel nel 1984 ex Medicinal chemistry: librerie di cloni mutanti possono essere prodotte inserendo cassette completamente casuali di oligonucleotidi nei loci bersaglio 1990, un referee dell’ Int. J. Peptide Protein Res., a proposito del primo articolo di Furka: “My overall view is that the content of the paper is not immediatly useful nor is especially original. I recommend rejection”.

Caos chimico Strutture dissipative e auto-organizzazione Scienza, produzione e immagine pubblica Caos chimico Strutture dissipative e auto-organizzazione 1952 Alan Turing, sulla “base chimica della morfogenesi” 1964 Articolo di Zhabotinsky sulla reazione di Belousov 1967 Prigogine e Nicolis, sulle “strutture dissipative” Hunt, Hunt e Ross 1990 Ann. Rev. Phys. Chem. Temi trattati sulle dinamiche non lineari: Propagazione di onde e strutture spaziali Oscillazioni in sistemi eterogenei Oscillazioni biologiche Patterns geochimici Modelli 1990 Boissonade e De Kepper, il Gel Strip Reactor

Trompe l'œil: struttura vs. reattività, ovvero O/I Sia nella didattica, sia nella divulgazione si privilegia l'aspetto osservativo della conoscenza delle strutture molecolari a scapito di ciò che permette l'intervento del chimico sul mondo microscopico: il controllo della reattività.

Trompe l'œil: struttura vs. reattività, Osservare vs. Intervenire La chimica degli ultimi decenni, supramolecolare, combinatoriale, non-lineare ha affrontato con nuovi metodi il controllo della reattività. Le nuove procedure conoscitive si sono affiancate a quelle più classiche: Reazioni mirate, per la formazione di strutture o di particolari strutturali Catalizzatori, per dirigere la cinetica delle reazioni

Struttura vs. reattività, ovvero osservare e intervenire

Quantità e qualità nella produzione industriale Scienza, produzione e immagine pubblica Quantità e qualità nella produzione industriale

L'immagine della chimica Due o tre crisi Scienza, produzione e immagine pubblica L'immagine della chimica Due o tre crisi 1903-1913 Un decennio di conquista della fisica > 1927 Inizia l’assalto della fisica quantistica 1953-1959 Dalla doppia elica al Journal of Molecular Biology 1945 Impiego della bomba atomica: terrore & risparmio > 1962 La devastazione dell’ambiente naturale viene imputata alla chimica

Scienza & Società L’immagine pubblica

Scienza & Società L’immagine pubblica

Osservazioni finali Sulle gerarchie accademiche Scienza, produzione e immagine pubblica Osservazioni finali Sulle gerarchie accademiche Mutati rapporti con il potere politico Mutati rapporti con il potere economico Latitanza sulla scena culturale

Osservazioni finali Sull’immagine pubblica Scienza, produzione e immagine pubblica Osservazioni finali Sull’immagine pubblica Declino generale dell’immagine della scienza Implicazioni ‘chimiche’ del degrado ambientale Latitanza sulla scena culturale

Scienza, produzione e immagine pubblica Conclusioni In nuce  La chimica è in buona salute  I chimici un po’ meno  Tuttavia ...