Una calcolatrice del XV° secolo I Bastoncini di Nepero Una calcolatrice del XV° secolo
NEPERO (John Napier) Barone di Merchiston Nacque nel castello di Merchiston nei pressi di Edimburgo (Scozia) nel 1550, si dedicò inizialmente agli studi teologici partecipando attivamente alla lotta fra protestantesimo e cattolicesimo in difesa della Chiesa Anglicana. Abbandonati gli studi di teologia si dedicò esclusivamente agli studi matematici e di strumenti bellici. Il suo nome è legato all'invenzione dei logaritmi. Morì a Edimburgo nell'Aprile del 1617.
I Bastoncini 3 6 9 2 1 5 8 4 7 8 6 1 4 2 3 5 7 F 1 2 3 4 5 6 7 8 9 Sono costituiti da 10 moduli verticali nei quali vengono riportate le tabelline dei numeri da 0 a 9. Ogni risultato viene scritto in un quadrato diviso a metà dalla diagonale principale; si scrive una sola cifra per ogni parte. Questi sono i “regoli mobili”. Oltre a questi “bastoncini” se ne prepara un altro che chiameremo “regolo fisso”; esso è costituito dalla sequenza di cifre da 1 a 9.
F 1 2 3 4 5 6 7 8 9 Regolo fisso Regoli mobili 1 2 3 4 5 6 7 8 9 2 4 6 1 2 3 4 5 6 7 8 9 2 4 6 8 1 3 6 9 2 1 5 8 4 7 4 8 2 1 6 3 5 1 2 3 4 6 2 1 8 4 3 5 7 4 1 2 8 5 3 9 6 8 6 1 4 2 3 5 7 9 8 1 7 2 6 3 5 4 Regolo fisso Regoli mobili
Funzionamento Con i bastoncini di Nepero si possono effettuare moltiplicazioni fra un qualunque numero e un elemento del regolo fisso (numeri da 1 a 9). Si scelgono i regoli mobili con cui comporre il numero da moltiplicare e si raggruppano assieme; alla loro sinistra si avvicina il regolo fisso e su di esso si individua il fattore da moltiplicare….
F 1 2 3 4 5 6 7 8 9 4 8 2 1 6 3 7 5 9 Esempio: Se vogliamo effettuare la moltiplicazione 247 x 6 riuniremo i regoli mobili e fisso come nello schema.
F 1 2 3 4 5 6 7 8 9 4 8 2 1 6 3 7 5 9 247 x 6 Si va a “leggere” la combinazione di cifre sul gruppo di regoli mobili in corrispondenza del 6 sul regolo fisso….
F 1 2 3 4 5 6 7 8 9 4 8 2 1 6 7 5 3 247 x 6 Le cifre della combinazione vengono sommate in diagonale e, da destra verso sinistra compongono il risultato finale … Eventuali riporti vanno considerati. 1 2 4 2 4 2 1 2+2 4+4 2 1 4 8 2 247 x 6 = 1482 SEQUENZA
F 1 2 3 4 5 6 7 8 9 8 6 1 4 2 3 5 7 5 1 2 3 4 9 8 1 7 2 6 3 5 4 859 x 7 In questa operazione bisogna considerare due riporti ….. 859 x 7 = 6013 Quanto fa?
F 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 2 4 6 8 1 3 6 9 1 2 5 8 4 7 4 8 1 2 6 3 5 1 2 3 4 6 1 2 8 4 3 5 7 1 4 2 8 3 5 9 6 8 1 6 2 4 3 5 7 9 1 8 2 7 3 6 4 5
F 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 2 4 6 8 1 3 6 9 1 2 5 8 4 7 4 8 1 2 6 3 5 1 2 3 4 6 1 2 8 4 3 5 7 1 4 2 8 3 5 9 6 8 1 6 2 4 3 5 7 9 1 8 2 7 3 6 4 5