1 Lezione IX seconda parte Avviare la presentazione col tasto “Invio”

Slides:



Advertisements
Presentazioni simili
Le forze ed i loro effetti
Advertisements

Meccanica 5 31 marzo 2011 Lavoro. Principio di sovrapposizione
Principio di conservazione della quantità di moto
Dinamica del punto Argomenti della lezione
A. Martini Un altro aspetto nuovo, incredibile e di enorme importanza è il collegamento tra MASSA ed ENERGIA.
Applicazione h Si consideri un punto materiale
Lavoro ed energia cinetica: introduzione
Centro di massa Consideriamo un sistema di due punti materiali di masse m1 e m2 che possono muoversi in una dimensione lungo un asse x x m1 m2 x1 x2 xc.
Le forze conservative g P2 P1 U= energia potenziale
Il lavoro [L]=[F][L]=[ML-2T -2] S.I.: 1 Joule = 1 m2 kg s-2
Un corpo di massa m= 0.5 kg, che si muove su di un piano orizzontale liscio con velocità v=0.5 m/s verso sinistra, colpisce una molla di costante elastica.
Lavoro di una forza costante
La quantità di moto Data una particella di massa m che si muove con velocità v Si definisce quantità di moto la quantità: È un vettore Prodotto di uno.
La quantità di moto La quantità di moto di un sistema di punti materiali si ottiene sommando le quantità di moto di ciascun punto materiale Ricordando.
Misura della costante elastica di una molla per via statica
Rotazione di un corpo rigido attorno ad un asse fisso
Il lavoro dipende dal percorso??
Il lavoro oppure [L]=[F][L]=[ML2T -2] S.I.: 1 Joule = 1 m2 kg s-2
Il prodotto vettoriale
G.M. - Edile A 2002/03 Appli cazio ne Si consideri un punto materiale –posto ad un altezza h dal suolo, –posto su un piano inclinato liscio di altezza.
Lezione 4 Dinamica del punto
Lezione 5 Dinamica del punto
Lezione 7 Dinamica dei sistemi di punti materiali
Lo studio delle cause del moto: dinamica
I.T.C. e per Geometri Enrico Mattei
I PRINCIPI FONDAMENTALI DELLA DINAMICA (Leggi di Newton)
Corso di Fisica - Lavoro ed energia
PRIMO PRINCIPIO DELLA DINAMICA
Il moto armonico Palermo Filomena.
Esempio 1 Un blocco di massa m scivola lungo una superficie curva priva di attrito come in figura. In ogni istante, la forza normale N risulta perpendicolare.
La Legge di conservazione dell’energia
Prof. Roberto Capone Lavoro ed energia
Riepilogo della parte di programma oggetto della prova parziale 1.
Lavoro ed Energia.
Ricapitoliamo: Abbiamo introdotto la dinamica dicendo che in sostanza, il problema della dinamica di un corpo (per semplicità un punto materiale) è.
Relatore prof. re CATELLO INGENITO
FORZE CONSERVATIVE E DISSIPATIVE
Esercizi (attrito trascurabile)
E n e r g i a.
1 Lezione V – seconda parte Avviare la presentazione col tasto “Invio”
© Nichi D'Amico1 Lezione II - seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione X -b Avviare la presentazione col tasto “Invio”
1 Lezione VIII seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione VII Avviare la presentazione col tasto “Invio”
I PRINCIPI DELLA DINAMICA
1 Lezione XIII – terza parte Avviare la presentazione col tasto “Invio”
1 Lezione XII-b Avviare la presentazione col tasto “Invio”
1 Lezione VII – seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione VI – seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione XIV -c Avviare la presentazione col tasto “Invio”
1 Lezione XII Avviare la presentazione col tasto “Invio”
1 Lezione IX – quarta parte Avviare la presentazione col tasto “Invio”
1 Lezione XV-a Avviare la presentazione col tasto “Invio”
1 Lezione VI Avviare la presentazione col tasto “Invio”
1 Lezione IX Avviare la presentazione col tasto “Invio”
1 Lezione IX – terza parte Avviare la presentazione col tasto “Invio”
Avviare la presentazione col tasto “Invio”
Prof.ssa Veronica Matteo
LAVORO E ENERGIA. LAVORO Il lavoro prodotto da una forza F su un corpo, è dato dal prodotto tra la componente della forza Fs, lungo lo spostamento e lo.
Moti relativi y P y’ O O’ x  x’
Transcript della presentazione:

1 Lezione IX seconda parte Avviare la presentazione col tasto “Invio”

Riepilogo II Forze conservative e non conservative 2

Abbiamo visto che un corpo dotato di energia cinetica è in grado di effettuare lavoro (a scapito della sua energia cinetica): 3

Le forze per cui si osserva il fenomeno della «restituzione dell’energia cinetica», si chiamano forze conservative: lo è la forza esercitata da una molla, come lo è la forza gravitazionale 4

In un esperimento di questo tipo, l’energia cinetica viene ceduta e riacquisita periodicamente 5

Le forze conservative, come la forza di una molla o come la forza gravitazionale, sono in grado di restituire ad una massa m la sua energia cinetica. Le forze non conservative come le forze di attrito, o di deformazione non elastica NO!!! 6 Il blocco NON riacquista la sua energia cinetica !!!

Quindi: se in parallelo ad una forza conservativa (per esempio la forza gravitazionale) è presente anche una forza non conservativa, per esempio l’attrito dell’aria, non tutta l’energia cinetica della massa m sarà restituita: Se per esempio il pallone nel suo viaggio di andata e ritorno in verticale è soggetto all’attrito dell’aria, il pallone tornerà al punto di partenza con meno energia cinetica di quanto ne possedeva alla partenza. 7

A B Abbiamo anche visto che ciò che risulta rilevante ai fini del computo del lavoro L effettuato da una forza conservativa F nel muovere una massa da A a B è la sola componente del segmento A-B lungo la direzione della forza F, o le componenti dei segmenti verticali infinitesimi Δh lungo la direzione della forza, la cui sommatoria è sempre: F = -mg ∑ Δh = h per il percorso in salita ∑ Δh = −h per il percorso in discesa 8 Cioè il lavoro fatto da una forza conservativa NON dipende dal percorso ma solo dalle posizioni iniziale e finale

Al contrario, nel caso di forze NON conservative, per esempio le forze d’attrito, il lavoro fatto dalla forza in questione dipende dal percorso seguito per spostarsi fra il punto iniziale e il punto finale e in generale il percorso lungo un ciclo chiuso NON è nullo. Supponiamo per esempio un corpo che si muove su un tavolo, dotato di attrito, da un punto A ad un punto B seguendo di volta in volta percorsi differenti: AB 9

Al contrario, nel caso di forze NON conservative, per esempio le forze d’attrito, il lavoro fatto dalla forza in questione dipende dal percorso seguito per spostarsi fra il punto iniziale e il punto finale e in generale il percorso lungo un ciclo chiuso NON è nullo. Supponiamo per esempio un corpo che si muove su un tavolo, dotato di attrito, da un punto A ad un punto B seguendo di volta in volta percorsi differenti: AB 10

Al contrario, nel caso di forze NON conservative, per esempio le forze d’attrito, il lavoro fatto dalla forza in questione dipende dal percorso seguito per spostarsi fra il punto iniziale e il punto finale e in generale il percorso lungo un ciclo chiuso NON è nullo. Supponiamo per esempio un corpo che si muove su un tavolo, dotato di attrito, da un punto A ad un punto B seguendo di volta in volta percorsi differenti: AB 11

In qualsiasi direzione si stia muovendo ad ogni istante il corpo in questione, la forza di attrito si oppone sempre al suo moto, quindi effettua sempre un lavoro negativo a scapito dell’energia cinetica del corpo. AB 12

E quindi anche lungo un ciclo chiuso, il lavoro NON risulta nullo, ma negativo, con una perdita netta di energia cinetica AB 13

Possiamo adottare indifferentemente le due definizioni di forze conservative che sono una la conseguenza dell’altra. Una forza si dice conservativa se il lavoro da essa eseguito nello spostare un corpo da un punto ad un altro dipende solo dalla posizione dei due punti e non dal percorso seguito. Una forza si dice conservativa se il lavoro da essa eseguito nello spostare un corpo lungo un percorso chiuso risulta nullo. 14

Lavoro ed Energia 15

Lavoro fatto da una forza costante Consideriamo ancora il caso di una forza F = costante, e di un moto rettilineo lungo la direzione di una forza. In questo caso, come sappiamo possiamo ridurre nuovamente lo studio al caso unidimensionale (scalare) (moto lungo l’asse x ). E sappiamo già che la particella di muoverà di moto accelerato con accelerazione costante a = F/m F Definiamo Lavoro fatto dalla forza F sulla particella come il prodotto del modulo della forza F per la distanza percorsa dalla particella L = F d x 16

Consideriamo adesso il caso in cui la forza (sempre costante) non agisce però lungo la direzione di moto: F x In questo caso definiremo il Lavoro fatto dalla forza F sulla particella come il prodotto della componente F x della forza lungo la direzione di moto, per la distanza percorsa dalla particella L = F x d L = F cos (θ) d Se θ = 0, il Lavoro è semplicemente F d, come per il caso precedente, mentre se θ = 90° il lavoro fatto dalla forza F sulla particella è nullo. FxFx 17

Il Lavoro è una quantità scalare ed altro non è che il prodotto scalare dei vettori F e d L = F d 18

Unità di misura del Lavoro L’unità di misura del lavoro è il lavoro fatto dall’unità di forza nel muovere un corpo dell’unità di lunghezza nella direzione della forza. Quindi nel sistema SI l’unità di lavoro è 1 Newton-metro, detto joule. Un’altra unità di misura in uso è il kilogrammetro, definita come 1kgm = 9,8 joule 19

Lavoro fatto da una forza variabile Consideriamo il caso di una forza che varia soltanto in modulo, che agisce lungo la direzione x, e supponiamo di conoscere come varia il modulo F in funzione di x. Ci poniamo il quesito di calcolare il lavoro fatto da questa forza variabile quando il punto materiale si sposta da x 1 a x 2. Supponiamo per esempio di sapere che la funzione F(x) sia come in figura : x F(x) x1x1 x2x2 0 20

x F(x) x1x1 x2x2 0 Dividiamo lo spostamento totale x 1  x 2 in tanti piccoli intervalli consecutivi Δx. Il lavoro fatto falla forza F nello spostare il punto materiale da x i a x i + Δx, assumendo che la forza sia costante nell’intervallo in questione, sarà dato da ΔL = F(x i ) Δx ΔxΔx  ΔL = F(x i ) Δx = area del rettangolo 21

x F(x) x1x1 x2x2 0 Il lavoro totale falla forza F nello spostare il punto materiale da x 1 a x 2, sarà dato approssimativamente dalla somma di un numero di termini come di seguito: L 12 ≈ ∑ F(x i ) Δx ΔxΔx 22

x F(x) x1x1 x2x2 0 Per migliorare la nostra approssimazione, possiamo suddividere in intervalli Δx sempre più piccoli. L 12 ≈ ∑ F(x i )Δx ΔxΔx 23

Otterremo un risultato esatto per il lavoro fatto dalla forza F(x) nello spostare il punto da x 1 a x 2, attraverso un processo al limite: L 12 = lim ∑ F(x i ) Δx = F(x) dx Δx  0 ∫ x1x1 x2x2 x F(x) x1x1 x2x2 0 Questa relazione definisce l’integrale di F rispetto a x da x 1 a x 2 e numericamente è esattamente uguale all’area indicata in figura 24

Supponiamo di avere una molla attaccata ad una parete, e supponiamo che nel suo stato di equilibrio l’estremità della molla sia posizionata alla coordinata x 0 x0x0 x La forza esercitata dalla molla quando è stata allungata fino ad un certo valore x dalla sua posizione di equilibrio x 0, è data dalla cosiddetta Legge di Hooke: F = − k (x−x0) e il suo verso è sempre opposto allo spostamento da x 0 x0x0 x F k = costante elastica della molla 25

Quando la molla è allungata x > x 0 ; quando la molla è compressa x < x 0 La forza F è sempre diretta verso x 0, e quindi cambia segno quando il suo estremo passa per la posizione di riposo x 0 x0x0 x x0x0 x Possiamo assumere x 0 = 0 e la formula diviene semplicemente F = − k x 26

Per deformare la molla senza che si generino accelerazioni, è sufficiente applicare alla molla una forza F’ esattamente eguale e contraria alla forza F esercitata dalla molla su di noi. La forza che applicheremo sarà quindi: F’ = kx. Il lavoro fatto da questa forza F’ per allungare la molla da 0 a x è: L 12 = F’(x)dx = kxdx = ½ kx 2 ? ∫ x 0 Come calcolare un integrale così semplice, in modo grafico: (l’integrale è l’area….) F’(x) x F’(x) = kx kx Area = ½ kx 2 27

Energia cinetica Supponiamo il caso in cui la risultante F delle forze applicate ad una massa m sia costante (in termini vettoriali cioè sia in modulo che in direzione e verso). Come sappiamo, una forze costante costante imprime alla massa in questione una accelerazione costante a, data dalla II Legge di Newton: a = F / m Scegliamo come sistema di riferimento l’asse delle x coincidente con la direzione comune della forza F e dell’accelerazione a, e calcoliamo il lavoro fatto dalla forza F nello sposare la massa m di una quantità x. d=x x F a x 0 28

Il lavoro L = F x applicando la II Legge di Newton risulta essere: = ½ mv 2 − ½ mv 0 2 Abbiamo definito questa quantità l’Energia Cinetica (energia di movimento) della massa m e la indichiamo col simbolo K K= ½ mv 2 In base a questa formulazione quindi: Il lavoro fatto da una forza su una particella è uguale alla sua variazione di Energia Cinetica 29

Per quanto abbiamo ricavato questa formulazione nel semplice caso di una forza costante, si dimostra che la formulazione è del tutto generale e vale anche nel caso di una forza variabile. Nella slide successiva, affronteremo per esempio il caso di una forza F che varia in modulo, in funzione della posizione, ma non in direzione. 30

∫ x0x0 x L = F(x) dx = ½ mv 2 − ½ mv 0 2 Si dimostra che anche nel caso in cui la forza non solo varia in modulo, ma varia anche in direzione, in ogni caso risulta sempre che il lavoro fatto dalla risultante delle forze su una particella è eguale alla sua variazione di energia cinetica : L (lavoro della forza risultante) = K –K 0 = ΔK (Teorema Lavoro-Energia) 31

Sul significato di lavoro negativo Supponiamo che l’energia cinetica K di una particella diminuisca. Allora il lavoro L fatto su di essa dalla risultante F delle forze applicate risulta negativo L = K − K 0 < 0 se K < K 0 Questa equazione può essere interpretata affermando che l’energia cinetica di una particella diminuisce di una quantità eguale al lavoro da essa prodotto per contrastare Una forza (così come aumenta di una quantità uguale al lavoro ricevuto da una forza) In sostanza: una particella in moto possiede una certa quantità di energia, sotto forma di energia cinetica (energia di movimento). Non appena produce lavoro, perde energia cinetica (cioè velocità). Quindi: l’energia cinetica di un corpo in movimento è pari è eguale al lavoro che produce nel fermarsi. 32