1 Lezione IX – quarta parte Avviare la presentazione col tasto “Invio”

Slides:



Advertisements
Presentazioni simili
LA DESCRIZIONE DEL MOTO
Advertisements

CINEMATICA SINTESI E APPUNTI.
Meccanica aprile 2011 Urti Conservazione della quantita` di moto e teorema dell’impulso Energia cinetica Urti elastici e anelastici Urto con corpi.
Meccanica 2 1 marzo 2011 Cinematica in una dimensione
Meccanica 5 31 marzo 2011 Lavoro. Principio di sovrapposizione
Dinamica del punto Argomenti della lezione
Cinematica Studio puramente descrittivo del moto dei corpi, indipendentemente dalle cause (=> forze) che determinano le variazioni dello stato di moto.
MECCANICA (descrizione del moto dei corpi)
Centro di massa Consideriamo un sistema di due punti materiali di masse m1 e m2 che possono muoversi in una dimensione lungo un asse x x m1 m2 x1 x2 xc.
Velocità media Abbiamo definito la velocità vettoriale media.
Lavoro di una forza costante
G. Pugliese, corso di Fisica Generale
Il moto armonico Altro esempio interessante di moto è quello armonico caratterizzato dal fatto che l’accelerazione è proporzionale all’opposto della posizione:
Il lavoro oppure [L]=[F][L]=[ML2T -2] S.I.: 1 Joule = 1 m2 kg s-2
Il prodotto vettoriale
Grandezze scalari e vettoriali
Lezione 5 Dinamica del punto
Lezione 7 Dinamica dei sistemi di punti materiali
Pg 1. Pg 2 Agenda per oggi Agenda per oggi 1-D moto: Cinematica Velocità e accelerazione media ed istantanea Moto con accelerazione costante.
Le leggi della dinamica
CINEMATICA DINAMICA ENERGIA. Cosa rappresenta la linea a ? a LO SPAZIO PERCORSO LA TRAIETTORIA LA POSIZIONE RAGGIUNTA ……………...
Bartoletti Andrea Cocchiaro Samuele Fedele Lia Rossi Micaela
Il Movimento Cinematica.
CINEMATICA Lezione n.3 –Fisica ITI «Torricelli» –S.Agata M.llo (ME)
Meccanica 4. L’accelerazione.
Il moto.
Descrizione geometrica del moto
Vettori Finche’ il moto si svolge in una sola dimensione – moto unidimensionale, moto rettilineo – non abbiamo bisogno di vettori La posizione e’ individuata.
Velocita’ La velocita’ istantanea ad un determinato istante e’ il tasso di incremento o decremento della posizione di un corpo in quell’istante Essendo.
2. Meccanica Fisica Medica – Giulio Caracciolo.
Meccanica I moti rettilinei
Le leggi della dinamica
Testi e dispense consigliati
Il moto armonico Palermo Filomena.
Esempio 1 Consideriamo un punto materiale che effettua un moto particolare lungo l’asse x. Supponiamo per esempio che la particella parta da un punto.
Urti fra particelle 1. Quando due particelle si urtano, agisce su di esse una forza molto grande per un intervallo di tempo molto breve: durante il tempo.
Moti piani (moti in due dimensioni)
Riepilogo della parte di programma oggetto della prova parziale 1.
Lavoro ed Energia.
Cinematica Punto materiale: modello che rappresenta un oggetto di piccole dimensioni in moto Traiettoria: linea che unisce tutte le posizioni attraverso.
Ricapitoliamo: Abbiamo introdotto la dinamica dicendo che in sostanza, il problema della dinamica di un corpo (per semplicità un punto materiale) è.
Prof. Francesco Zampieri
(descrizione quantitativa del moto dei corpi)
Esercizi (attrito trascurabile)
MOTO circolare uniforme
Corso di Fisica Lezione 4 La dinamica.
1 Lezione V – seconda parte Avviare la presentazione col tasto “Invio”
© Nichi D'Amico1 Lezione II - seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione X -b Avviare la presentazione col tasto “Invio”
1 Lezione VIII seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione VII Avviare la presentazione col tasto “Invio”
1 Lezione IX seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione XIII – terza parte Avviare la presentazione col tasto “Invio”
© Nichi D'Amico1 Lezione II – terza parte Avviare la presentazione col tasto “Invio”
1 Lezione VII – seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione XI Avviare la presentazione col tasto “Invio”
Nichi D'Amico1 Lezione II Avviare la presentazione col tasto “Invio”
1 Lezione VI – seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione XIV -c Avviare la presentazione col tasto “Invio”
1 Lezione XIV -b Avviare la presentazione col tasto “Invio”
Avviare la presentazione col tasto “Invio”
1 Lezione XII Avviare la presentazione col tasto “Invio”
1 Lezione XV-a Avviare la presentazione col tasto “Invio”
1 Lezione VI Avviare la presentazione col tasto “Invio”
1 Lezione IX Avviare la presentazione col tasto “Invio”
1 Lezione IX – terza parte Avviare la presentazione col tasto “Invio”
Avviare la presentazione col tasto “Invio”
Il Moto. Partendo da una quesito assegnato nei test di ingresso alla facoltà di medicina, si analizza il moto di un oggetto.
Cinematica del punto materiale Studia il moto dei corpi senza riferimento alle sue cause Il moto è completamente determinato se e` nota la posizione del.
Transcript della presentazione:

1 Lezione IX – quarta parte Avviare la presentazione col tasto “Invio”

2 Riepilogo IV

3 Cinematica e dinamica

4 Avevamo iniziato il corso definendo le grandezze fisiche fondamentali per trattare il moto Posizione Spostamento: cambiamento di posizione Velocità: rapidità con cui cambia la posizione Accelerazione: rapidità con cui cambia la velocità

5 Abbiamo visto che si tratta di grandezze vettoriali, anche se nel caso di moto in una dimensione possiamo trattare il problema adottando il formalismo scalare. Abbiamo preso dimestichezza con il problema della risoluzione temporale di un dato fenomeno fisico: Per esempio: poiché lo spostamento è definito some la variazione di posizione in un dato intervallo di tempo, la variazione di posizione durante l’intervallo Δt di un punto materiale che si muove di un moto «bizzarro» può non essere esaustiva. x O Tempo t ΔrΔr ΔtΔt

6 v = Δr / Δt Ci siamo resi conto che «campionando» il nostro fenomeno fisico (in questo caso il moto rettilineo di un punto materiale) con un intervallo di tempo relativamente lungo, perdiamo dettagli che potrebbero essere importanti. E infatti, applicando a questo caso la definizione di velocità, abbiamo stabilito che la formula: deve essere intesa come velocità media, grandezza fisica a volte utile, ma a volte meno utile. Per esempio nel caso seguente: x O Tempo t Δr = 0 ΔtΔt Risulterebbe: v = Δr / Δt = 0

7 Ci siamo quindi resi conto della opportunità di campionare il fenomeno con una maggiore risoluzione temporale, cioè con intervallo di tempo Δ t sempre più piccoli, fino a pervenire a una rappresentazione grafica «continua» della posizione x(t) in funzione del tempo: Tempo t x x Δt →0

Per ogni istante t abbiamo definito la velocità istantanea v(t) come il valor limite a cui tende il rapporto Δr / Δt quando Δt tende a zero: v = lim ( Δr/Δt ) m / s Δt →0 Tempo t x x Δt →0 x = v t In ogni punto, la velocità istantanea v(t) è il coefficiente angolare della retta tangente la curva x(t) 8

9 Essendo in grado di ricavare una serie «fitta» di punti per la velocità istantanea v ( t ), siamo stati in grado di farne una interpolazione grafica, e ci siamo resi conto che a questo punto eravamo in grado di applicare le stesso processo a limite (Δ t  0) per ricavare l’accelerazione istantanea, che in ogni punto è il coefficiente angolare della retta tangente alla funzione velocità v ( t ) così come la velocità istantanea era il coefficiente angolare della retta tangente alla funzione spostamento x ( t ). A questo proposito abbiamo visto un esempio abbastanza semplice: una particella che parte da un punto P localizzato a 1m dall’origine e si sposta verso il punto Q localizzato a 5 m dall’origine e quindi torna indietro al punto R a 2 m dall’origine x P R Q

Abbiamo definito un sistema di assi cartesiani per x e t. Lo spostamento in questo sistema di assi sarà descritto da una curva così sec m x t P Q R 10

Abbiamo calcolato la velocità istantanea v i (t i ) in numero di punti sufficientemente elevato di punti sec x t P Q R 11

A questo punto abbiamo definito un sistema di assi cartesiani per v x e t, e abbiamo Riportato i valori delle velocità istantanee calcolate nei vari punti e abbiamo operato una interpolazione grafica sec m/s vxvx t Q R P S W 12

La linea curva che abbiamo individuato nel piano ( v x, t) altro non è che la rappresentazione grafica della velocita del punto materiale in funzione del tempo v x (t) sec m/s vxvx t 13

Di questa funzione v x (t) potremo calcolare l’accelerazione istantanea punto per punto ricordando che a = dv /dt è la pendenza della retta tangente in ogni punto sec m/s vxvx t 14

15 Abbiamo anche visto che nel caso unidimensionale, l’equazione del moto di un punto materiale che si muove a partire da un punto inziale x 0, con una velocità iniziale pari a v 0 e con una accelerazione a costante è la seguente: x(t) = x 0 + v 0 t + ½ at 2 E abbiamo visto alcuni esempi in cui a = g = − 9,8 m/s 2

16 Poi siamo passati dal caso unidimensionale al caso bidimensionale (moto in un piano) e ci siamo resi conto che in questo caso l’uso del formalismo vettoriale non è opzionale ma risulta obbligatorio. Questo in quanto non esiste una direzione unica, e la direzione del moto va quindi definita dalle stesse grandezze in gioco. Infatti, in un piano x-y, un punto materiale può manifestare il suo moto in una qualunque direzione. In particolare, un punto che si muova lungo una linea curva, cambia continuamente direzione. Tuttavia, ci siamo resi conto che il moto delle proiezioni del punto lungo le componenti x-y è ovviamente sempre un moto unidimensionale.

17 Mentre il punto materiale si muove lungo la traiettoria curva, le sue proiezioni sugli assi x e y si muovono di moto rettilineo (ma non necessariamente uniforme). y x P Q xPxP xQxQ yPyP yQyQ Quindi: tutto ciò che abbiamo imparato sulle equazioni del moto in una dimensione può essere tranquillamente applicato alle componenti lungo gli assi x e y delle varie grandezze fisiche: x y v x v y a x a y

18 Dinamica: Abbiamo introdotto la dinamica dicendo che in sostanza, il problema della dinamica di un corpo (per semplicità un punto materiale) è determinare come si muove la particella, note le cause che agiscono su di essa. Quindi per esempio nel caso di un moto unidimensionale lungo l’asse x, determinare la funzione x(t) in funzione delle cause che agiscono sulla particella. Adesso abbiamo definito queste cause: le forze che agiscono sulla particella, o più in generale la risultante F delle forze F i che agiscono sulla particella. E abbiamo definito tre importanti Leggi: le Leggi di Newton

19 La I Legge di Newton: Ogni corpo persiste nel suo stato di quiete o di moto rettilineo uniforme finché forze esterne ad esso non lo costringano a mutare questo stato. La II Legge di Newton: L'accelerazione di un corpo è direttamente proporzionale e nella stessa direzione della forza agente su di esso, ed è inversamente proporzionale alla sua massa: F = m a La III Legge di Newton: Se un corpo A esercita una forza su un corpo B, il corpo B esercita su A una forza uguale e contraria.

20 Abbiamo visto che una interessante formulazione della II Legge è la seguente: a = F/m E’ interessante in questa forma in quanto ci permette di ricavare informazioni sul moto di un corpo una volta note le forze che agiscono su di esso. Rivediamo quali sono le implicazioni pratiche di questa Legge, nella risoluzione del problema della determinazione di x(t) in funzione di F 

21 Le implicazioni sono molto interessanti: e si perché già in cinematica abbiamo imparato a determinare x(t) in funzione dell’accelerazione a e quindi se possiamo scrivere a = F/m siamo immediatamente in grado di determinare x(t) in funzione di F Quindi per esempio nel caso di un moto unidimensionale, dalle equazioni della cinematica che già conosciamo: x(t) = v 0 t + ½ at 2 v(t) = v 0 + at Ponendo: a = F/m Scriveremo: x(t) = v 0 t + ½ (F/m)t 2 v(t) = v 0 + (F/m)t

22 Ovviamente, non dimentichiamo che le equazioni che abbiamo appena scritto erano state derivate per il caso a = costante, e quindi valgono solo nel caso F = costante.

23 Quindi per esempio, nel caso di a = costante, si osserva in funzione del tempo una cosa del genere: t t a(t) v(t)

24 Quindi: la formula che abbiamo scritto in per il caso semplice a = costante, è soltanto il caso particolare di una relazione più generale in cui la velocità è (istante per Istante) l’area (l’integrale) definita dalla curva nel piano a(t)-t. Nel caso particolare di un moto uniformemente accelerato, cioè a = costante, la velocità cresce linearmente, ma è sempre data (istante per istante) dall’area in questione che nel caso specifico è l’area del seguente rettangolo: v = a t ( + ovviamente un termine iniziale v 0 ) a t Area = a x t

25 Quindi velocità istantanea e accelerazione istantanea, cioè le funzioni v(t) e a(t) sono connesse dalle relazioni inverse: a(t) = dv(t) / dt v(t) = a(t) dt ∫ Questo ci dice che quando avremo a che fare con forze variabili (e di conseguenza accelerazioni variabili) dovremo inevitabilmente ricorrere a derivate e integrali, anche se in molti casi vedremo che le soluzioni sono semplici e spesso posso essere ricavate in base a dei grafici.

La «ricetta» per risolvere un problema generico (l’esito di un esperimento): Ci sono corpi in moto ? In caso affermativo, i dati del problema sono sufficienti a calcolarne l’energia cinetica e la quantità di moto ? In caso affermativo, calcoliamo queste grandezze! Poi vedremo bene cosa farne! Ci sono urti ? In caso affermativo sono elastici ?anelastici? o completamente anelastici ? Siamo quindi in condizione di prevedere l’esito di questi urti ? Se si, passiamo ai numeri! Ci sono fasi dell’esperimento in cui un dato corpo perde la sua energia cinetica in modo conservativo ? per esempio risalendo una rampa senza attrito o comprimendo una molla ? In caso affermativo, passiamo ai numeri, ci sarà utile! Ci sono invece fenomeni in cui l’energia cinetica viene persa attraverso l’intervento di forze non conservative ? In questo caso, il problema ci fornisce sufficienti informazioni per calcolarla ? 26