Le proprietà dei materiali

Slides:



Advertisements
Presentazioni simili
Piccioni Sara e Fidanza Davide;
Advertisements

Lavoro svolto da Antonio Ferrara Classe 2°H I.T.I.S Majorana
Corso dell’A.A Università degli Studi di Trieste
Le proprietà meccaniche le attitudini che ha un materiale a resistere a sollecitazioni o azioni esterne che tendono a deformarlo.
Caratteristiche e proprietà dei solidi
4 – Forze intermolecolari
Fisica 2 Corrente continua
Meccanica 11 1 aprile 2011 Elasticità Sforzo e deformazione
ELETTRICITA’ E MAGNETISMO
La conoscenza delle proprietà ci consente
I legami secondari Chimica e laboratorio Classi quarte/quinte
Molecole una molecola è un gruppo di atomi legati con legami covalenti
10. I Materiali Liquidi e Solidi
legami intermolecolari
CAMPO MAGNETICO GENERATO
Proprietà dei materiali
Uguali in tutte le direzioni (Stato solido amorfo stato vetroso)
Classificazione dei materiali
ISTITUTO PROFESSIONALE DI STATO PER L’INDUSTRIA E L’ARTIGIANATO SAN BENEDETTO DEL TRONTO LAVORO MULTIMEDIALE di FRANCESCO SCARAMUCCI GIUGNO.
Deformazione plastica nei metalli
La resilienza La resilienza è la capacità di un materiale di resistere a sollecitazioni impulsive (urti). Può anche definirsi come l'energia per unità.
Frattura Ogni processo di rottura avviene in due stadi : la formazione e propagazione della cricca Sono possibili due modi di rottura: duttile e fragile.
Università degli Studi L’Aquila Dipartimento MESVA
LEGAMI INTERATOMICI L’esistenza di un legame fra due atomi nasce
UNIVERSITA’ DI CATANIA
Concetti Legame covalente Tipi di legame e ordine di legame
Forze intermolecolari – legame a idrogeno Scuola: Liceo Scientifico
STATO LIQUIDO Forze di attrazione intermolecolari >
Proprietà dei materiali
Riducendo l’agitazione termica  legami tra molecole più stabili
Le forze molecolari e gli stati della materia
Caratteristiche e proprietà dei solidi
Perché molecole discrete come I2, P4, S8 sono solide
teoria dell’orbitale molecolare (MO)
Il comportamento di una sostanza può essere interpretato in maniera completa solo se si conosce anche la natura dei legami che tengono uniti gli atomi.
Riducendo l’agitazione termica  legami tra molecole più stabili
Stati di aggregazione della materia
Geometria molecolare e polarità delle molecole
CHIMICA APPLICATA TECNOLOGIA DEI MATERIALI
1. Il modello atomico 1.2 Gli stati di aggregazione della materia.
Materiali *.
GLI STATI DELLA MATERIA
LO STATO SOLIDO Lo stato solido rappresenta uno dei tre stati di aggregazione della materia. Nello stato solido le forze attrattive tra le particelle (ioni,
DOWNLOAD MAPPA CONCETTUALE
Caratteristiche e proprietà dei solidi
Il comportamento di una sostanza può essere interpretato in maniera completa solo se si conosce anche la natura dei legami che tengono uniti gli atomi.
Prove Meccaniche sui materiali metallici
FASE Diversi stati fisici della materia e forme alternative di un medesimo stato fisico. Esempi di fase sono il ghiaccio e l’acqua liquida. Il diamante.
Termodinamica Introduzione. La TERMODINAMICA è nata per studiare i fenomeni termici, in particolare per studiare il funzionamento delle macchine termiche.
Lo Stato Liquido Lo stato liquido è uno stato di aggregazione con caratteristiche intermedie tra quelle dello stato gassoso (altamente disordinato) e quelle.
Lezione 4: Proprietà TermoMeccaniche dei Polimeri
LO STATO SOLIDO. Solidi cristallini Caratteristica tipica dei solidi cristallini e ̀ l’anisotropia: proprietà di una sostanza per cui i valori delle.
La classificazione dei metalli Durante l’esperienza con il PLS abbiamo avuto modo di classificare i metalli secondo i nostri sensi. E’ possibile effettuare.
Proprietà dei liquidi. Processo Le proprietà dei materiali in fase liquida sono molto importanti per tutte le operazioni di trasformazione In molti casi,
Introduzione alla scienza dei materiali. Informazioni utili Ricevimento: giovedì ore (o previo appuntamento.
Lo Stato Solido Lo stato solido è lo stato di aggregazione della materia in cui le forze attrattive tra le particelle (ioni, atomi, molecole) prevalgono.
GLI STATI DI AGGREGAZIONE DELLA MATERIA LO STATO SOLIDO.
Proprietà meccaniche Prove meccaniche prova di trazione
I liquidi e loro proprietà
(a) Durometro (b) Sequenza per la misura della durezza con un
Le prove sui materiali Le prove meccaniche meccaniche tecnologiche
STRUTTURA DEI MATERIALI METALLICI
Proprietà dei materiali
Transcript della presentazione:

Le proprietà dei materiali Scienze dei Materiali Le proprietà dei materiali

La materia è organizzata in diversi livelli Livello subatomico Interazioni di elettroni e nuclei entro gli atomi; fornisce le basi per la comprensione del comportamento elettrico, magnetico, termico ed ottico dei materiali. Livello atomico e molecolare Interazione tra atomi (e/o molecole) che conducono diversi tipi di legame e a diversi stati di aggregazione della materia. Livello microscopico Disposizione degli atomi e delle molecole nello spazio (cristallinità ed aggregazione amorfa). Livello macroscopico Proprietà misurabili in laboratorio su un volume di materiale e risultanti la media delle proprietà degli stati microscopici.

Legami Il legame ionico si instaura tra ioni di carica opposta. Gli ioni si sistemano nei solidi in modo da preservare l’elettroneutralità complessiva. I solidi ionici sono costituiti da aggregati tridimensionali con un elevato grado di impaccamento anche se non pari a quello dei metalli. Il rapporto tra i raggi ionici (r /R) determina la geometria dell’intorno di ogni ione (numero di coordinazione).

Legame covalente Il legame covalente si instaura tra atomi simili quando gli orbitali atomici di entrambi si sovrappongono dando luogo agli orbitali di legame. Il legame covalente si instaura lungo la direzione in cui gli orbitali atomici danno luogo alla massima sovrapposizione. La direzionalità del legame impedisce il libero posizionamento degli atomi nello spazio e limita fortemente l’impaccamento atomico. In genere il legame covalente è altamente energetico e ciò spiega gli alti valori di resistenza dei materiali che li compongono.

Legame metallico Il legame metallico si instaura tra gli atomi metallici a causa della elevata mobilità e delocalizzazione degli elettroni di valenza. L’orbitale che descrive il legame deve essere un orbitale molecolare che abbracci tutti gli atomi. Il legame metallico non è direzionale, si sviluppano interazioni della stessa intensità in tutte le direzioni. Questo spiega perché gli atomi metallici si sistemino nello spazio formando strutture molto impaccate ed alta densità. In particolare vanno ricordati i metalli di transizione che hanno come elettroni di valenza quelli negli orbitali d (ed f). Il legame metallico ha un parziale carattere covalente che spiega gli alti punti di fusione e le alte resistenze mostrati da alcuni elementi metallici.

STRUTTURE DEI SOLIDI I materiali di interesse ingegneristico sono allo stato solido; per stato solido si intende uno stato di aggregazione di atomi ioni o molecole, in contrapposizione con gli stati fluidi, liquidi o gassosi. L’aggregazione delle particelle costituenti il solido può condurre a strutture cristalline o amorfe. Solido cristallino: Regolarità della ripetizione delle distanze interatomiche anche oltre i primi vicini Ordine a lungo raggio Danno luogo ad un’immagine di diffrazione se irradiati con raggi X Solido amorfo Assenza di regolarità nella disposizione tridimensionale degli atomi Ordine a corto raggio Non danno luogo ad un’immagine di diffrazione se irradiati con raggi X METALLI cristallini CERAMICI cristallini ed amorfi POLIMERI amorfi e semicristallini

Un solido amorfo può essere considerato un liquido ad alta viscosità (o bassa fluidità). In un materiale semicristallino si possono individuare zone cristalline, e quindi ordinate, circondate da atomi non disposti in maniera ordinata. Un solido cristallino è caratterizzato da disposizione ordinata degli atomi, ioni o molecole, ossia le unità costitutive del cristallo. Nel caso di molecole (es. H2O, polimeri… ) il legame responsabile della formazione del cristallo sarà un legame secondario (dipolo-dipolo o Van der Waals). Nel caso di un singolo cristallo puro, l’ordine interno si manifesta con la simmetria dell’aspetto esteriore. Il cristallo può essere immaginato o come una disposizione regolare di atomi o come un reticolo tridimensionale ottenuto per ripetizione di un’identica unità di base o anche detta cella Unitaria. La sistemazione degli atomi secondo un reticolo ordinato è una conseguenza della tendenza della materia verso la condizione di energia interna minima. L’energia complessiva di tutto il cristallo è data dalla sommatoria delle energie relative alle coppie di atomi. Gli atomi vengono assimilati a delle sfere.

Microstruttura Il livello di organizzazione strutturale della materia che può essere osservata generalmente con l'aiuto di un microscopio (ottico ed elettronico) è quello che può essere definito microstruttura. La microstruttura è il risultato delle modalità di produzione di un materiale, ma anche delle successive lavorazioni e dei trattamenti subiti. Il rilevamento microstrutturale fa parte dei metodi di controllo della qualità dei materiali in esercizio: una variazione della microstruttura indica variazioni nelle proprietà e possibile degradazione. La microstruttura è l'insieme di caratteristiche che va dal numero di fasi presenti alla loro distribuzione, forma geometrica, frazione in volume e dimensioni. Tutte le proprietà dei materiali ne sono influenzate in diverso grado. L'omogeneità (il materiale è costituito da una sola fase anche se non necessariamente da un solo elemento) o l'eterogeneità (il materiale è costituito da due o più fasi distinte) dei materiali sono caratteristiche microstrutturali importanti. Tra i materiali per costruzioni o di interesse industriale è molto più diffusa l'eterogeneità. Il numero e la quantità di fasi presenti possono essere valutati sulla base dei diagrammi di stato.

La dimensione delle fasi dipende strettamente da fattori cinetici legati alla formazione e crescita delle fasi. La forma e le distribuzioni delle fasi sono meno prevedibili. La forma delle fasi può determinare l'isotropia o l'anisotropia delle proprietà dei materiali. Nel primo caso le proprietà assumono sempre lo stesso valore indipendentemente dalle direzioni di misura, nel secondo caso il valore sarà diverso dipendentemente dalla direzione di misura sperimentale. Sono anisotropi i cristalli singoli ed i materiali policristallini orientati. Sono isotropi gli amorfi (vetri, polimeri) ed i policristallini non orientati

Proprietà meccaniche Le proprietà meccaniche determinano la risposta dei materiali sotto l’azione di forze. Esse dipendono dal tipo di legame, dalla struttura, dal numero e dal tipo di imperfezioni e quindi sono sensibili ai processi di formatura, che sono in grado di variare la microstruttura a parità di composizione chimica. Le forze, dipendentemente dalle modalità di applicazione sono definite statiche o dinamiche. Le forze statiche sono costanti nel tempo, mentre quelle dinamiche variano col tempo (impatto, forze alternate). Ogni forza applicata ad un materiale determina uno sforzo σ = F/A (Pa o multipli) ed una conseguente deformazione ε (ε > 0→trazione,ε < 0→compressione)

Proprietà meccaniche dei materiali Resistenza: la capacità di resistere ad una forza applicata senza fratturarsi. Elasticità: la capacità di ritornare alle dimensioni proprie. Plasticità: la capacità di conservare la forma imposta. Duttilità: la capacità di essere tirati in fili. Malleabilità: la capacità di essere laminati. Anelasticità: deformazione elastica dipendente dal tempo Scorrimento viscoso: capacità di deformarsi permanentemente ad un grado dipendente dal tempo di applicazione del carico Fragilità: la tendenza a fratturarsi se sottoposto ad un carico, soprattutto se di tipo impulsivo. I materiali fragili non mostrano segni premonitori dell’imminente frattura. Resilienza: la capacità di assorbire lavoro per fratturarsi in maniera fragile. Tenacità: la capacità di resistere alla frattura con grande deformazione. Durezza: resistenza all’abrasione e all’indentazione, in generale alla deformazione plastica.

Resistenza Nel loro impiego i materiali devono resistere a sollecitazioni meccaniche di varia natura: carichi di trazione, compressione, taglio, flessione, urto, ecc.. Le deformazioni sono prodotte da sforzi che, localmente, superano l’energia dei legami chimici consentendo lo scorrimento relativo dei piani cristallini o delle macromolecole che li costituiscono cosicché il materiale può assumere nuove forme (comportamento plastico). Sforzi più elevati comportano la rottura.

Deformabilità La deformabilità dei materiali viene prima di tutto valutata con prove statiche sottoponendo provini di dimensioni contenute e forma geometrica semplice a forze statiche e misurando le deformazioni corrispondenti. Le prove statiche sono generalmente uniassiali sono dette di compressione, trazione e taglio. Durante la prova si incrementa la forza applicata continuando a registrare le deformazioni prodotte, fino a frattura del materiale. I provini sono diversi a seconda del tipo di materiale e prova: cilindri di grande diametro o cubi nel caso di compressione (se il materiale non è fragile la prova si interrompe quando l =1/2 lo). Il provino per la prova in trazione è in genere di materiale metallico e sagomato per poter essere afferrato nei morsetti della macchina di prova (i materiali ceramici e fragili generalmente non vengono testati secondo questa modalità). Tutti i materiali possono essere suddivisi in classi relativamente al loro modo prevalente di deformazione, valutato tramite i diagrammi tensione deformazione (σ ε).

Legge di Hooke L’elasticità è governata dalla legge di Hooke σ = Eε (sollecitazione uniassiale) con E = modulo di Young; σ carico unitario; ε allungamento Un materiale si dice elastico quando la deformazione prodotta è interamente recuperata alla rimozione della forza. Un materiale si dice elastoplastico quando, superato un certo valore di forza, la deformazione indotta permane. Un materiale elastomerico mostra grande deformazione recuperabile per bassi valori di tensione. Esistono anche i materiali viscoelastici ed anelastici nei quali la deformazione dipende dal tempo di applicazione della forza.

Modulo di Young Il modulo di Young E è una caratteristica del materiale, dipende direttamente dalle forze di legame e cresce all’aumentare di queste. I materiali molecolari hanno bassi valori di modulo elastico, in quanto i legami intermolecolari sono molto deboli. Il modulo elastico decresce all’aumentare della temperatura, in quanto le distanze interatomiche medie sono maggiori e si riducono le forze interatomiche di richiamo elastico

Il modulo elastico risente dell’alligazione, il modulo elastico della lega segue la legge delle miscele. L’aggiunta di piccole frazioni in volume di legante non produce apprezzabili variazioni di modulo di elasticità. Infatti gli acciai al carbonio (C fino a 1.2% in peso) hanno lo stesso modulo elastico e diversa deformabilità

Durezza La durezza rappresenta la resistenza di un materiale all’abrasione ed alla penetrazione. La procedura di misurazione della durezza prevede l’utilizzo di indentatori. L’indentatore è costituito da un penetratore con punta di materiale molto duro che, caricato con pesi di valore noto, produce su superfici piane del materiale delle impronte misurabili. Infatti la procedura di misura prevede che inizialmente, a causa della ridotta area di contatto tra la punta e la superficie, l’indentatore eserciti una pressione tanto elevata da indurre deformazione plastica. La penetrazione dell’indentatore si arresta quando l’area dell’impronta di deformazione si è accresciuta a tal punto da non provocare più né deformazione plastica né elastica. Alcuni indentatori (microindentatori) possono produrre impronte di dimensioni micrometriche, tanto che la misura di durezza può essere fatta senza alterare il manufatto. La prova è non distruttiva e può essere condotta in situ per il controllo qualità o la verifica dello stato del materiale. I materiali molto duri sono anche molto fragili, per cui la durezza di materiali ceramici come il vetro viene misurata con microindentatori. Gli indentatori possono essere appuntiti (metodo Vickers) o arrotondati (metodo Brinell) ed il valore di durezza viene indicato con HV (Hardness Vickers = durezza Vickers) o HB (Hardness Brinell = durezza Brinell) ed unità di misura della pressione. HV = F/A = Pa o suoi multipli