Come si può studiare la struttura di una proteina

Slides:



Advertisements
Presentazioni simili
Struttura delle proteine
Advertisements

Fenomeni di Rilassamento z x y Impulso rf a 90° z B0B0 B0B0 x y x y z.
Concetti di base nella chimica degli esseri viventi.
Particelle elementari
Perchè predire la struttura terziaria?
PROSITE contiene anche pattern ad ALTA OCCORRENZA, corti e aspecifici (modifiche post-traduzionali) Es. phosphorylation by CK2 [ST]-x(2)-[DE]
Raccolta dati Set up esperimento di diffrazione
Spettroscopia Una parte molto importante della Chimica Analitica Strumentale è basata sullo studio dello scambio di energia (interazioni) tra la radiazione.
Spettroscopia Una parte molto importante della Chimica Analitica Strumentale è basata sullo studio dello scambio di energia nelle interazioni tra la radiazione.
Le proteine: come sono fatte, come funzionano, e come si sono evolute
Dr. Adolfo Esposito Esperto Qualificato LNF - INFN
I legami secondari Chimica e laboratorio Classi quarte/quinte
Struttura dell'atomo L'atomo è costituito da: nucleo elettroni
Predizione della Struttura Terziaria.
BASI DI DATI BIOLOGICHE - 3
Cristallografia a raggi X
Principi fisici di conversione avanzata (Energetica L.S.)
Spin e fisica atomica Atomo in un campo magnetico
I LABORATORI : LABORATORIO DI METEREOLOGIA (prof. F. Prodi, dott. F. Porcù) LABORATORIO LASER (prof. R. Calabrese, dott. L. Tomassetti) LABORATORIO DI.
Nuclei come micro-rivelatori di effetti di QCD Esperimenti di alte energie ( DESY (HERMES), CERN, JLAB) 1) Trasparenza di colore 2) Adronizzazione Perché
DERIVATE dellENERGIA e PROPRIETA MOLECOLARI. 1.Differenze di energia : energia di dissociazione, stabilità relativa di conformeri, calori di reazione,
Termodinamica Chimica
SPETTROSCOPIA FOTOELETTRONICA
PEPTIDI E PROTEINE.
CPE nella misura dell’esposizione
Introduzione ai metodi spettroscopici per i Beni Culturali
Bioinformatica Corso di Laurea Specialistica in Informatica Analisi della struttura dell’RNA 27/04/2011.
Metodi basati sulle similitudini per dedurre la funzione di un gene
Effetto Doppler L'effetto Doppler è il cambiamento apparente di frequenza di un'onda percepita da un osservatore quando l'osservatore e/o la sorgente sono.
II lezione.
DETERMINAZIONE DELLA STRUTTURA DELLE PROTEINE CANALE
Condizioni di ripetibilita L'esperimento sia condotto sempre dallo stesso osservatore. Siano usati sempre gli stessi strumenti e le stesse procedure. Siano.
Interazioni con la Materia
FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE (lezione II)
Allineamento Metodo bioinformatico che date due o più sequenze ne mette in evidenza similarità/diversità, supponendo che le sequenze analizzate abbiano.
Ecologia ed educazione ambientale
MECCANISMI DI INTERAZIONE DELLE RADIAZIONI
Luomo, i viventi, lambiente Lezione 3 Scienza, sistemi, materia ed energia Luca Fiorani.
Corrente (o conteggi) di buio
Homology modelling L’omology modeling delle proteine è il tipo di predizione di struttura terziaria più semplice ed affidabile. Viene richiesta soltanto.
Esistono 3 metodi principali di predizione:
Lezione 7 Effetto Compton.
MEDICINA NUCLEARE In generale, la Medicina Nucleare è quella branca della medicina clinica che utilizza le proprietà fisiche del nucleo atomico per scopo.
la materia vista sotto "una luce diversa"
L’ energia Si misura in Joule (J) L’ energia Dal greco energheia (attivita) nucleare idroelettrica chimica Si misura in Joule (J) geotermica meccanica.
Le forze della fisica ? Le forze della fisica ? Le forze della fisica ? Le forze della fisica ? Le forze della fisica ? Le forze della fisica ? Le forze.
Perché molecole discrete come I2, P4, S8 sono solide
Esempio di utilizzo del programma BLAST disponibile all’NCBI
Determinazione della fase
Riducendo l’agitazione termica  legami tra molecole più stabili
Docking.
CORSO DI BIOLOGIA - Programma
Modelli della Fisica.
Allineamento di sequenze
Il Microscopio elettronico a scansione
AMMINOACIDI E PROTEINE
Laurea Specialistica “Metodologie Chimiche Avanzate” A.A Gabriele Ricchiardi Ricercatore/Chimica Fisica Tel.:
Allineamento di sequenze Perché è importante? Le caratteristiche funzionali delle molecole biologiche dipendono dalle conformazione tridimensionale che.
Sistema di ricerca Entrez Insieme di banche dati contenenti svariati tipi di informazioni biomediche, interrogabile mediante un’unica interfaccia Concetto.
CONFORMAZIONE organizzazione spaziale degli atomi in una proteina STRUTTURA NATIVA conformazione funzionale di una proteina La FUNZIONE di una proteina.
STRUTTURE DI MACROMOLECOLE & BANCHE DATI STRUTTURALI.
  Disegno assistito dal computer STRATEGIE PER LA RICERCA DEI NUOVI LEADS Computer-assisted design utilizza la chimica computazionale per al scoperta.
Tecniche Chirottiche per Composti Organici 6_
Dal composto organico alla sua formula molecolare  Individuazione dei gruppi funzionali  Determinazione della formula bruta e preliminari informazioni.
Clonaggio funzionale Clonaggio posizionale Conoscenza proteina Malattia genetica Determinazione sequenza amminoac.Mappatura genetica con marcatori polimorfici.
Predizione della Struttura Terziaria. Perchè predire la struttura terziaria? In cifre: – sequenze proteiche –~ 30,000 strutture, ~ 7,000.
I raggi cosmici sono particelle subatomiche, frammenti di atomi, che provengono dallo spazio.
Allineamenti Multipli Problema Durante l’evoluzione i residui importanti per il mantenimento della struttura e della funzione sono conservati. Come riconoscere.
La struttura delle proteine La peculiare sequenza amminoacidica di una catena polipeptidica rappresenta la struttura primaria Lisozima.
CALORIMETRIA La CALORIMETRIA è la misura quantitativa del calore richiesto o rilasciato durante un processo chimico. La misura si effettua con un calorimetro.
Transcript della presentazione:

Come si può studiare la struttura di una proteina i metodi sperimentali classici per la risoluzione della struttura tridimensionale di una proteina sono: la cristallografia a raggi X la spettroscopia a risonanza magnetica e nucleare (Nuclear Magnetic Resonance, NMR)

diffrazione ai raggi X NMR formazione di cristalli cellula batterica plasmide DNA esogeno formazione di cristalli NMR moltiplicazione del clone purificazione della proteina

Cristallografia a raggi X La proteina, cristallizzata, viene bombardata con un raggio di fotoni collimati ad alta energia. I fotoni vengono diffratti in modo differente a seconda del tipo di atomo che colpiscono. I raggi diffratti vengono raccolti formando un quadro (pattern) di diffrazione Il pattern di diffrazione viene usato per ricostruire le coordinate dei singoli atomi che compongono la macromolecola e quindi la sua struttura 3D. I raggi X interagiscono quasi esclusivamente con gli elettroni presenti nella materia e non con i nuclei. Una struttura ai raggi X è quindi un’immagine della densità elettronica dell’oggetto in analisi

Cristallografia a raggi X Risoluzione ottenibile su piccole molecole organiche  1Å. In generale proteine cristallizate hanno grado di organizzazione più basso che limitano la risoluzione (2-3.5Å). Questo è dovuto anche all’alta idratazione dei cristalli (40-60% di acqua). Una tale risoluzione non è sufficiente per rivelare la posizione dei singoli atomi, ma è sufficiente per tracciare l’andamento e la disposizione dello scheletro covalente della proteina. Occorre quindi conoscere la sequenza primaria in modo da adattare la mappa della densità elettronica alla sequanza aminoacidica. Limiti del metodo: Cristallizzare proteine e` difficile Ricavare la struttura dal pattern di diffrazione e` computazionalmente complesso L’informazione che si ottiene e` statica, mentre la conforomazione di una proteina in soluzione varia nel tempo B factor (fattore di temperatura): indice “indiretto” di flessibilita’ strutturale

In un cristallo di proteine, in ogni cella (sito reticolare) si trova una proteina = somma di densità elettroniche dovute ai singoli atomi

Il risultato sperimentale diretto di un’ analisi cristallografica è una mappa di densità elettronica e non il modello atomico che voi state osservando!!! Se vi sono errori nelle strutture cristallografiche questi sono dovuti all’interpretazione (soggettiva) delle mappe elettroniche da parte del cristallografo!!

PARAMETRI X VALUTAZIONE DELL’INFORMAZIONE CONTENUTA NELLA STRUTTURA X-RAY: Risoluzione (R) della mappa di densità elettronica (tra 3 e 1.5 Å). Strutture con R > 2.5 Å dettagli solo sul backbone, R < 2 Å dettagli su atomi catene laterali R-value e R-free: parametri associati al livello di “discordanza” tra modello atomico e mappa di densita’ elettronica (devono essere R-value < 20% e R-free < 30%). Forniscono, in ultima istanza, indicazioni su quanto differiscono tra loro mappa di densita’ elettronica osservata (sperimentale) e mappa di densita’ elettronica calcolata dal modello della struttura finale.

Spettroscopia a risonanza magnetica nucleare (NMR) Permette di ottenere informazioni sulla struttura di una molecola attraverso l’interazione con una radiazione elettromagnetica. Si basa sullo stesso principio della risonanza magnetica usata in medicina, usa onde radio. I nuclei atomici (elettricamente carichi) ruotano, con una velocità angolare quantizzata, creando un momento magnetico  Immersi in un campo magnetico omogeneo esterno i momenti magnetici si allineano (“traballando” a causa del rumore termico). I nuceli vengono irradiati da onde radio (RF), l’effetto è di “disallineare”  (tanto da farli “ribaltare”). http://www.psrc.usm.edu/italian/nmr.htm http://www.fci.unibo.it/~montevec/nmr.htm http://w3.uniroma1.it/centricnr-cscson/annibale/NMR1.doc È possibile rilevare quando i momenti magnetici dei vari nuclei (che continuano a ruotare) si inclinano completamente sul piano perpendicolare rispetto al campo magnetico applicato grazie ad un'antenna che capta le onde radio che questi generano ed è collocata perpendicolarmente al campo magnetico applicato.

Spettroscopia a risonanza magnetica nucleare (NMR) Ogni nucleo mostra le sue caratteristiche perchè ruota a velocità differente a seconda della sua posizione nella molecola e all'ambiente che gli atomi vicini gli fanno sentire e quindi risuona a frequenze radio diverse. Nuclei diversi risuonano a frequenze diverse. Ciò significa innanzitutto che un atomo di carbonio deve essere colpito da un'onda radio con frequenza diversa da quella necessaria ad un atomo di idrogeno per “ribaltarsi” di 90°, ma anche che atomi simili in ambienti diversi, come un atomo di idrogeno legato ad un atomo di ossigeno ed un atomo di idrogeno legato ad un atomo di carbonio si ribaltano a frequenze diverse. Questo è dovuto alla “schermatura” degli elettroni vicini Caratteristiche: studio delle proteine in soluzione (non occorre cristallizzarle) alta risoluzione temporale (millisecondi) informazioni sulle distanze interprotoniche non precise la “proton signature” limita il metodo allanalsi di molecole “piccole” (<30 KD  <250 residui) informazioni su strutture di complessi proteici deducibili solo con il ricorso a metodi di modellistica guidati dai dati sperimentali http://www.psrc.usm.edu/italian/nmr.htm http://www.fci.unibo.it/~montevec/nmr.htm http://w3.uniroma1.it/centricnr-cscson/annibale/NMR1.doc

PDB: banca dati di strutture (Protein Data Bank) – ridondante – strutture ottenute sperimentalmente via X-ray o NMR Il file PDB http://www.pdb.org Esempio: Deossiemoglobina umana (1a3n) HEADER OXYGEN TRANSPORT 22-JAN-98 1A3N TITLE DEOXY HUMAN HEMOGLOBIN COMPND MOL_ID: 1; COMPND 2 MOLECULE: HEMOGLOBIN; COMPND 3 CHAIN: A, B, C, D; COMPND 4 BIOLOGICAL_UNIT: ALPHA-BETA-ALPHA-BETA TETRAMER SOURCE MOL_ID: 1; SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; SOURCE 3 ORGANISM_COMMON: HUMAN; SOURCE 4 TISSUE: BLOOD; SOURCE 5 CELL: RED CELL KEYWDS OXYGEN TRANSPORT, HEME, RESPIRATORY PROTEIN, ERYTHROCYTE EXPDTA X-RAY DIFFRACTION AUTHOR J.TAME,B.VALLONE REVDAT 1 29-APR-98 1A3N 0 REMARK 1 REMARK 2 REMARK 2 RESOLUTION. 1.8 ANGSTROMS. REMARK 3 […]

tipo di atomo tipo di amminoacido coordinate X Y Z … ATOM 1 N VAL A 1 10.720 19.523 6.163 1.00 21.36 N ATOM 2 CA VAL A 1 10.228 20.761 6.807 1.00 24.26 C ATOM 3 C VAL A 1 8.705 20.714 6.878 1.00 18.62 C ATOM 4 O VAL A 1 8.164 20.005 6.015 1.00 19.87 O ATOM 5 CB VAL A 1 10.602 22.000 5.966 1.00 27.19 C ATOM 6 CG1 VAL A 1 10.307 23.296 6.700 1.00 31.86 C ATOM 7 CG2 VAL A 1 12.065 21.951 5.544 1.00 31.74 C ATOM 8 N LEU A 2 8.091 21.453 7.775 1.00 16.19 N ATOM 9 CA LEU A 2 6.624 21.451 7.763 1.00 17.31 C ATOM 10 C LEU A 2 6.176 22.578 6.821 1.00 18.55 C ATOM 11 O LEU A 2 6.567 23.730 7.022 1.00 18.72 O ATOM 12 CB LEU A 2 6.020 21.707 9.129 1.00 18.34 C ATOM 13 CG LEU A 2 6.386 20.649 10.198 1.00 17.39 C ATOM 14 CD1 LEU A 2 5.998 21.119 11.577 1.00 17.99 C ATOM 15 CD2 LEU A 2 5.730 19.337 9.795 1.00 16.96 C ATOM 16 N SER A 3 5.380 22.237 5.852 1.00 15.02 N ATOM 17 CA SER A 3 4.831 23.237 4.928 1.00 16.59 C ATOM 18 C SER A 3 3.725 24.027 5.568 1.00 14.84 C ATOM 19 O SER A 3 3.095 23.717 6.591 1.00 14.40 O ATOM 20 CB SER A 3 4.308 22.429 3.727 1.00 16.47 C ATOM 21 OG SER A 3 3.076 21.786 3.991 1.00 14.91 O …

CONFRONTO STRUTTURE 3D DI PROTEINE – ALLINEAMENTO STRUTTURALE Come nel confronto di sequenze e’ necessario allinearle, nel confronto di strutture 3D e’ necessario sovrapporle come corpi rigidi scegliendo una regola di corrispondenza tra coppie di atomi o di residui nelle due strutture. La prima difficoltà consiste nel fatto che le due proteine molto spesso non hanno lo stesso numero di residui. Per la sovrapposizione si possono utilizzare le catene dei carboni alfa appartenenti agli elementi di struttura secondaria perche’ in genere le inserzioni e delezioni si accumulano nei loop che possono semplicemente venire esclusi dalla sovrapposizione. I metodi di confronto 3D utilizzano l’ allineamento delle sequenze per decidere la regola di corrispondenza alla base della sovrapposizione strutturale

Un allineamento strutturale può essere valutato in base alla deviazione quadratica media (root mean square deviation o r.m.s.d.), al numero di atomi che sono stati accoppiati nella sovrapposizione e alla valutazione della similarità dei residui sovrapposti. L’r.m.s.d. o r.m.s. di una sovrapposizione tridimensionale è la distanza media tra gli atomi di tutte le coppie che hanno partecipato all’allineamento strutturale, per cui tanto più bassa è l’r.m.s. tanto migliore sarà l’allineamento strutturale calcolato D = distanza tra coppie di atomi appaiati N = numero di coppie considerate

RMSD Root-mean-square deviation rai e rbi sono le posizioni dell´ atomo i nelle strutture a e b, n è il numero di atomi nelle strutture. r.m.s.d. di una sovrapposizione 3D è la distanza media tra gli atomi di tutte le coppie che hanno partecipato all’allineamento strutturale, per cui tanto più bassa è l’r.m.s. tanto migliore sarà l’allineamento strutturale calcolato Root-mean-square deviation Deviazione quadratica media Serve per paragonare strutture identiche, eccetto rotazioni e traslazioni

EVOLUZIONE DELLE PROTEINE RELAZIONE ESISTENTE TRA SIMILARITA’ di sequenza e struttura in omologhi Studio di un campione di strutture note di proteine omologhe (Chothia, Lesk, 1982) Similarità strutturale misurata in termini di RMSD CALCOLO RMS Confronto di due strutture mediante SOVRAPPOSIZIONE Determinazione di aa che si corrispondono nelle due strutture Identificazione degli atomi che si vogliono confrontare (Cα o backbone) RMSD= n = numero residui d = distanza tra atomi corrispondenti

valutazione dell’allineamento strutturale un altro criterio di valutazione di un allineamento strutturale è rappresentato dal numero di atomi o di residui che sono stati accoppiati si cerca di massimizzare il numero di atomi accoppiati e di minimizzare la corrispondente r.m.s. a parità di numero di residui accoppiati, il migliore allineamento strutturale sarà quello con minore r.m.s. a parità di r.m.s. verrà considerato migliore l’allineamento strutturale operato con un maggior numero di atomi accoppiati oltre a questi due valori tipici delle sovrapposizioni tridimensionali, si può anche considerare il punteggio di similarità dei residui accoppiati

DIVERGENZA DI SEQUENZA E STRUTTURA Se si valuta la relazione esistente tra divergenza strutturale (misurata in termini di RMSD) e divergenza di sequenza si osserva che esse si corrispondono in MODO ESPONENZIALE (valutato dal confronto di strutture note) 30% id.seq RMSD (A) %identity (RMSD< 2 Å) possono avere seq molto differenti (degenerazione del codice strutturale-struttura più conservata della seq)

SOGLIA di significatività per la SIMILARITA’ STRUTTURALE .confronto a coppie di struttura e seq di proteine 3D note, quantificato usando come parametri: lunghezza allineamento, % id seq, sim.struttura a confronto in un grafico: lunghezza allin vs id seq (e in terza dimensione sim.strutturale) Sim. Strut.parametrizzata come uguale/diverso (pallino/quadrato): 2 str. Uguali se > 70% della struttura sec è in comune (rmsd bassa). al di sotto della soglia rumore di fondo elevato 25% (x allin 80 aa) al di sopra del quale chiara similarità strutturale – soglia lunghezza dipendente possibile che proteine con identità < 25% abbiano strutture simili ma anche che non siano correlate strutturalmente (twilight zone) 100 Sec str identity < 70% %id seq Sec str identity > 70% 30 Length alignment 150

Dalla sequenza al modello Raw model Loop modeling Side chain placement Refinement

HOMOLOGY MODELLING OMOLOGO 3D (PDB) ALLINEAMENTO RICERCA DEL TEMPLATO Blast-FastA CRITERI IDENTITA’/SIMILARITA’ CONOSCENZA FUNZ.-STR.-BIOCHIM.

ALLINEAMENTO GUIDA LA COSTRUZIONE DEL MODELLO CORRISPONDENZA aa target  aa templato ricerca ALLINEAMENTO OTTIMALE CORRISPONDENZA DI aa FUNZ. IMPORTANTI CORRISPONDENZA DELLA STRUTTURA SECONDARIA TRA TEMPLATO E QUERY VALUTAZIONE DEI GAP  loop USO TEMPLATI MULTIPLI   loc.similarità

ALLINEAMENTO 1. Generazione di allineamenti a coppie diversi con diversi programmi (nel caso di un solo templato) 2. Allineamenti multipli di omologhi per avere informazioni maggiori 3. Ricerca di informazioni biologico-biochimiche sugli aa conservati 4. Predizione di struttura secondaria per il target 5. Correzione dell’allineamento sulla base delle informazioni ai punti 2. 3. e 4.

CREAZIONE DEL MODELLO ______________ ______________ x-ray SCRs identificazione SCR (structural conserved regions) SCR  scaffold del modello Raw model Loop modeling Side chain placement Refinement ______________ ______________ x-ray SCRs No SCRs (loops ?)

Costruzione del pre-modello La struttura del templato viene utilizzata come “stampo“ per costruire il modello seguendo l‘allineamento. Le coordinate 3D dei residui strutturalmente conservati si possono copiare direttamente. Le regioni variabili della struttura (generalmente loop) non si possono copiare. flexible conserved

Catene laterali Problema: Applicando le coordinate del templato sulla sequenza del target cambiano tipo, dimensione e posizione delle catene laterali. L‘RMSD cambia relativamente poco, però possono cambiare le conformazioni di residui importanti (p.es. del sito attivo) Dove possibile è meglio mantenere le conformazioni delle catene laterali del templato. Esistono metodi standard per risolvere questo problema. Raw model Loop modeling Side chain placement Refinement

PREDIZIONE DELLE CATENE LATERALI AUSILIO DI LIBRERIE DI ROTAMERI Contengono i possibili conformeri delle catene laterali a fronte di specifiche conformazioni del backbone OTTIMIZZAZIONE ENERGETICA DELLE STRUTTURA  rimozione di clash

Loop modeling Al pre-modello possono mancare interi frammenti di catena principale non conservati nella famiglia proteica Inserzioni Delezioni Descrizione del problema: Si cerca un fold che colleghi il frammento N-terminale (pre-loop) con quello C-terminale (post-loop) tramite k residui (f,y) sono gli unici parametri liberi Raw model Loop modeling Side chain placement Refinement loop post-loop pre-loop

PREDIZIONE DEI LOOP REGIONI VARIABILI –  pressione selettiva DUE STRATEGIE PREDITTIVE: criterio geometrico testando diverse conformazioni ricerca in PDB di frammenti simili nelle proteine a struttura nota  INFLUENZA DELL’INTORNO REFINEMENT CRITICO  OTTIMIZZAZIONE MEC. E DIN. MOL. CRITICITA’ nella predizione quando i LOOP rivestono ruolo funzionale o di interazione.

5. Ottimizzazione del modello Regolarizzazione di legami, angoli e torsioni Eliminazioni di clash strutturali Minimizzazione energetica