Corso di Fisica introduzione al linguaggio della fisica Fisica (dal latino physicu(m), dal greco physiké (sottointeso téchné) arte della natura, e da physis natura) è la scienza che descrive le leggi fondamentali che governano la natura. Tutte le discipline scientifiche hanno bisogno di un background di fisica : e.g. Struttura atomica, termodinamica delle reazioni chimiche, idrodinamica, radiazioni, uso di strumentazione scientifica, etc.
Metodo scientifico Osservazione del fenomeno Perche’? Schematizzazione Inserire esempio; Darwin ~1800 fece un viaggio di 5 anni su di un vascello (Beagle) lungo le coste sudamericane. Fringuelli delle isole galapagos 13 specie diverse in un gruppetto di isole teoria delle discendenze con modificazioni in contrapposizione all’ipotesi deista! Galielo~~1500 osservazione dell’oscillazione dei lampadari in chiesa; legame tra T ed l. Newton ~1600 Legge di gravitazione. Perche’ la mela cade e la luna no? Osservazione del fenomeno Perche’? Schematizzazione (cause dominanti - cause accessorie) Formulazione di una ipotesi - modello Verifica o confutazione mediante l'esperimento, (prova e riprova -riproducibilità) Formulazione quantitativa delle leggi
Esperimento come forma di conoscenza non filosofica della realtà Requisito fondamentale di qualsiasi affermazione scientifica è l’ intersoggettività. Warnings! L’ esperimento deve essere eseguito in“condizioni controllate”, ossia in una situazione in cui lo sperimentatore prende nota di tutti i possibili parametri che potrebbero influenzare i risultati. Legame diretto tra teoria ed esperimento; la profonda fede in una teoria può influenzare i risultati sperimentali. La riproducibilità di un fenomeno è condizione irrinunciabile perchè permette di controllare i due elementi che sono possibili fonti di errore: lo sperimentatore e lo strumento. E se un fenomeno non e’riproducibile? Si usa la statistica! Mettere a disposizione della comunità scientifica i risultati sperimentali e tutte le informazioni utili a riprodurli; più rapidamente circola l’informazione, più efficacemente i buoni risultati (quelli riproducibili) saranno confermati e gli altri scartati. Quando si lavora alle “frontiere della conoscenza” non esiste nulla di scontato e qualunque idea ha diritto, in linea di principio, ad essere presa in considerazione, anche se ad enunciarla è un premio Nobel. Ragionamento logico matematico (metodo assiomatico – la dimostrazione) come primo crieterio di intersoggettiità. Esempio1: temperatura di ebollizione dell’acqua, effetto della pressione. Esempio: Gaiger-Ruthenford- 1911 esperimento per la verifica del modello a panettone di Thomson. Particelle alfa contro lamine sottili d’oro. Interazione gravitazionale trascurabile.Secondo il modello di Thomson piccole deflessioni delle particelle, nell’esperimento 1 particella su 8000 subiscono una deflessione molto forte, compatibile solo con la repulsione coulombiana con una carica pari a tutta la carica positiva concentrata nel nucleo (10^-10m atomo– 10^-14 nucleo). Esempio: ll 23 marzo 1989, le agenzie di stampa diffusero la notizia che due ricercatori americani erano riusciti a produrre la fusione di due nuclei di deuterio (un isotopo dell’idrogeno composto da un protone e da un neutrone) a temperatura ambiente. Nella conferenza stampa tenuta nello Utah, Fleischmann e Pons annunciarono di aver prodotto un eccesso di calore e di aver osservato i tipici prodotti di una reazione di fusione. Sebbene l’eccesso di calore che alcuni sperimentatori sostengono di osservare sia del tutto inspiegabile, la non riproducibilità del fenomeno lascia molte perplessità. Russel (filosofo matematico del secolo scorso) , mise in discussione la teoria degli insiemi di Frege.
Descrizione quantitativa delle proprietà della natura. Ruolo fondamentale dell’operazione di misura in fisica. MISURA = Insieme di PROCEDURE e di CONVENZIONI che consentono di assegnare ad una grandezza un valore ed una unità di misura Definizione Operativa di una grandezza fisica: la grandezza fisica viene definita mediante la descrizione delle operazioni da compiere per misurare la grandezza in questione. E.g. tempo e spazio non sono categorie mentali, ma ciò che si misura con l’orologio e il regolo. . Riferimento Gaeiger
Quesito e avvertenze: sappiamo che cosa è la lunghezza,che cosa è la temperatura,che cosa è il secondo, il tempo, il metro…….? C’e’ un linguaggio di tutti giorni e c’è un linguaggio scientifico.. Entrambi usano spesso la stessa parola, ma essa associano significati che possono essere differenti. Nelle frasi “Faccio gli esercizi di fisica in un secondo” “su una traiettoria rettilinea, la posizione della macchina all’istante t=10 s è 10 m, a t=20 s è 100 m, quale è la velocità media “ “Ieri “pesavo” 70 kg, oggi ho perso due etti” “Mentre la massa di questo cubo di legno sulla terra e sulla luna è sempre la stessa, il suo peso cambia” “la forza di quell’atleta è indubbia” “la Forza esercitata da una molla è un vettore sempre antiparallelo allo spostamento del corpo su cui la molla agisce……. ” Ci sono parole che hanno un significato nel contesto, ma che possono essere scorrette se usate in ambito scientifico- IMPORTANZA DEFINIZIONE OPERATIVA
Da “Ageno, Elementi di fisica, Boringhieri 1963 e continua per una decina di pagine (da pag 3 a pag 12) in cui descrive il procedimento seguito per introdurre il concetto di lunghezza, (riassunto a pagina 12), per poi proseguire con le grandezze geometriche derivate (misure di curve, angoli, aree piane, aree di superfici qualsiasi, volumi…..).
Esempio di definizione operativa: lunghezza Si adotta un segmento campione, con cui realizzare la misura per confronto: La lunghezza di un segmento è il numero che si ottiene quando lo si confronti con il campione di misura. Esso è espresso come multiplo, sottomultiplo, frazione razionale o irrazionale della unità stabilita. AB=6U Lunghezza Campione (m): Lunghezza della barra di platino-iridio conservata al B.I.P.M. di Sevres (Parigi); nel 1983 il metro fu definito come: lunghezza che la luce percorre nel vuoto in un intervallo di tempo pari a 1/299792458 A B U Che succede se l’Universo si dilata? Si dilata il metro ma anche tutte le lunghezze da misurare, e dunque non mi accorgo della dilatazione. A meno di non considerare fenomeni come l’effetto Doppler che consiste nel cambiamento delle lunghezze d’onda delle radiazioni quando la fonte luminosa e’ in moto con v~c (si accorciano avvicinandosi e si allungano allontandosi). Questo, come tutti gli effetti relativistici coinvolgono la velocità, dunque una dilatazione delle lunghezze si nota se non accompagnata da pari dilatazione dei tempi!
Misura Diretta: si confronta la grandezza con un’altra della stessa specie scelta come campione Misura indiretta: La misura è dedotta dalla misurazione di grandezze fisiche di specie diversa tramite una legge e.g. misura dell’area di una superficie con area campione con lunghezza campione + geometria Una grandezza fisica è dunque specificata da un numero e da una unità di misura Es. Massa: 1.5 Kg; Velocità: 30 m/ s; Lunghezza: 6.5 m
Misura Empirica: La misura è definita operativamente in termini di uno strumento campione o di qualche proprietà di una sostanza campione Misura assoluta: La misura è definita operativamente senza far riferimento a particolari strumenti o particolari proprietà di una particolare sostanza e.g. misura di una forza con il dinamometro misurando le accelerazioni di corpi in interazione
Esistono diversi sistema di unità di misura, ciascuno dei quali distingue le grandezze in fondamentali e derivate. Grandezze fondamentali: vengono misurate per confronto con opportuni campioni indipendenti tra loro. Le grandezze fondamentali costituiscono un nucleo di poche grandezze dalle quali si ottengono tutte le altre. Esempi: Lunghezze Tempi Masse Grandezze fondamentali della Meccanica (parte della fisica che studia il moto dei corpi Cinematica -Dinamica) Grandezze derivate: espresse algebricamente in termini delle grandezze fondamentali. Esempi: Area Velocità Forza
Dimensioni di un numero? Le leggi della Natura non possono dipendere dall’arbitraria scelta del sistema di unità di misura. Analisi dimensionale Strumento per la verifica della correttezza delle formule e.g. dimensionalmente corretta solo per X=3 Volume della sfera: Il fatto che i due termini di un’uguaglianza abbiano le stesse dimensioni è dovuto alla necessità che le leggi della Natura non possono dipendere dall’arbitraria scelta del sistema di unità di misura. Gli argomenti delle funzioni (tranne che nei monomi) devono essere adimensionali. (log M M=massa non ha senso) Fare esempio ossa mammiferi e tempo di caduta mela Legge di Stevin: dimensionalmente corretta! Analisi Dimensionale
Esercizi 1. L’energia di un corpo ha dimensioni: verificare mediante analisi dimensionale la correttezza delle seguenti formule: 2. Determinare le corrette dimensioni della costante di gravitazione universale nella formula: Energia potenziale gravitazionale Energia cinetica Aggiungere qualche altro esercizio.
Sistema MKS (o SI) e sistema CGS: Grandezze SI (MKS) CGS Lunghezza [L] Metro (m) Centimetro (cm) Massa [M] Chilogrammo (kg) Grammo (g) Tempo [T] Secondo (s) Velocità [L] [T] m/s cm/s Accelerazione [L][T] Forza [M][L][T] Newton (N=kgm/s ) dina= g cm/s Lavoro [M][L] [T] Joule (J=N m) Erg=dina cm Potenza [M][L] [T] Watt (W=J/s) Erg/s Quale delle seguenti unità NON si riferisce a una pressione: A) torr; B) newton; C) baria; D) pascal; E) mm di Hg Se, in acqua di mare, il prodotto d.g (densità accelerazione di gravità) ha un valore numerico vicino a 10^4, le adatte unità di misura saranno: A) Pascal/m^2; B) Joule/m^2; C) N/m^3; D) Dyne/cm^2; E) Newton/m 2 -1 -2 -3 Quali dei seguenti gruppi di unità contiene SOLO unità di misura della grandezza “pressione”? A)Millimetro di mercurio, pascal, watt, atmosfera; B) Pascal, newton/(metro quadro), bar, ettopascal; C) Pascal, centimetro d’acqua, watt, atmosfera; D) Kilojoule, kilowattora, kilowatt, kilopascal; E) Millilitro, millipascal, millijoule, milliwatt; Nel Sistema Internazionale delle Unità di Misura SI, una pressione P si misura in pascal e un volume V in metri cubi. In quali unità di misura dello stesso sistema viene quindi misurato il prodotto P.V ? A) Joule; B) Watt; C) Kelvin; D) Newton; E) È adimensionale Quale fra quelle di seguito elencate NON rappresenta una unità di misura dell'energia? A) joule ; B) watt . sec; C) caloria ; D) joule/sec ; E) elettronvolt
App.1 Campioni di unità di misura nel SI Massa (Kg): Massa del blocco di platino-iridio conservata al B.I .P.M. di Sevres (Parigi) Lunghezza (m): Lunghezza della barra di platino-iridio conservata al B.I.P.M. di Sevres (Parigi); nel 1983 il metro fu definito come: lunghezza che la luce percorre nel vuoto in un intervallo di tempo pari a 1/299792458. Tempo (s):La 86400 parte del giorno solare medio;nel 1967 Venne definito come 9192631770 periodi di una Particolare transizione del 133Cs Accessoria
IL SISTEMA INTERNAZIONALE DI UNITÀ DI MISURA App. 2 IL SISTEMA INTERNAZIONALE DI UNITÀ DI MISURA Unità fondamentali nel sistema internazionale (SI) Grandezza Nome Simbolo Tempo secondo s Lunghezza metro m Massa kilogrammo kg Ammontare mole mol di sostanza Temperatura kelvin K Corrente ampere A elettrica Intensità candela cd luminosa Accessoria
App.3 Prefissi per multipli e sottomultipli nel SI Quale frazione di un centimetro è un micrometro? A) La decima parte; B) La centesima parte; C) La millesima parte; D) La decimillesima parte; E) La centimillesima parte. App.3 Prefissi per multipli e sottomultipli nel SI Fattore Prefisso Simbolo 10 ^18 exa E 10 ^15 peta P 10 ^12 tera T 10 ^9 giga G 10 ^6 mega M 10 ^3 kilo k 10 ^2 etto h 10 ^1 deca da 10 ^-1 deci d 10 ^-2 centi c 10 ^-3 milli m 10 ^-6 micro µ 10 ^-9 nano n 10 ^-12 pico p 10 ^-15 femto f 10 ^-18 atto a Accessoria
Conversione di unità di misura da un sistema ad un altro La scelta delle grandezze fondamentali e delle unità è convenzionale: per accordo internazionale il sistema di unità ufficiale è il Sistema Internazionale (SI) Conversione di unità di misura da un sistema ad un altro Il numero che esprime la misura di una grandezza fisica dipende dalla scelta dell’unità; cambiando unità cambia il numero che esprime la misura. G grandezza fisica assegnata U e V due. diverse unità di misura Le misure nelle due unità sono Gu=G/U Gv=G/V Il rapporto tra le misure è Gu/Gv=V/U Fattore di conversione e.g. Fattore di conversione Kg/g=1000 Fattore di conversione ore/secondi h/s =3600 > Quanti millimetri cubi sono contenuti in un millilitro? A) 1; B) 10; C) 100; D) 1000; E) 10.000 Un kilowattora è equivalente a: A) 3.600.000 watt; B) 1.000 calorie; C) 1.000 watt; D) 3.600.000 joule; E) 3.600 joule Watt=J/s h=3600s kilo=10^3
Esempi: Nel SI le velocità vengono espresse in m/s anziche’ in Km/ h. Così ad esempio una velocità di 10 km/h nelle unità del SI diventa v= 2.8 m/ s Calcolo esplicito: v= 10 km/ h = 10 · (10 m)/( 3600 s) =10 ·( 1/ 3.6) m/ s =2.777778 m/ s L’apporto calorico degli alimenti viene usualmente espresso in calorie (cal). La caloria è una unità di misura di energia e risulta 1 cal=4.18 Joule Così ad esempio 100 g di Yogurth magro corrispondenti a circa 50 kcal forniscono un contributo energetico al nostro organismo di circa 200 Kjoule. 3 Fare esempio di una legge fisica
Esercizi: 3. Convertire in giorni, ore, minuti e secondi la durata di 1000000 di secondi. 4. Il nodo è un’unità di misura della velocità e corrisponde ad 1 miglio marino (1M = 1852m) all’ora. Esprimere la velocità di 18 nodi nelle unità del SI. 5. Determinare a quanti barili corrispondono 3 metri cubi di petrolio, sapendo che 1 barile corrisponde a 170.34 decimetri cubi. 6. Tim Montgomery, primatista mondiale dei 100 m piani, ha stabilito un record di 9.78 s. Calcolare la velocità con cui Montgomery ha percorso la distanza in km/h. 7. La velocità di rientro nell’atmosfera di una capsula spaziale è dell’ordine di 30000 km/h. Esprimere questa velocità in m/s. 8. La terra ha approssimativamente forma sferica con raggio 6400 Km. Calcolare la superficie in km quadri ed il volume in metri cubi. 9. Calcolare il volume in metri cubi di una nuvola lunga 6 Km larga 4 km ed alta 2 Km. 1000000/86400=11+49600 49600/3600=13+2800 2800/60=46+40 100000s=11g,13h,46m,40s 18 nodi x 1852 m / 3600 s= 9.26m/s 170.34 dm^3=0.170.34 m^3 3/0.17034=17.61 barili 1000000/86400=11+49600 49600/3600=13+2800 2800/60=46+40 100000s=11g,13h,46m,40s 18 nodi x 1852 m / 3600 s= 9.26m/s 170.34 dm^3=0.170.34 m^3 3/0.17034=17.61 barili
Notazione scientifica Problema: esprimere misure molto grandi o molto piccole in modo efficiente ed immediatamente leggibile . La notazione scientifica prevede che i numeri vengano espressi come prodotto di un numero decimale compreso tra 1 e 10 (mantissa) per una opportuna potenza di 10: e.g. Numero di Avogadro N=602214199000000000000000 = 6,02214199 x 10 Velocità della luce c=299792458 m/s=2.99792458 x 10 m/s Carica dell’elettrone e= 0,000000000000000000160219 C=1,60219 x 10 C 23 8 -19
Operazioni algebriche in Regole delle potenze notazione scientifica Per sommare (sottrarre) due numeri in notazione scientifica bisogna rendere gli esponenti uguali e quindi sommare (sottrarre) le mantisse. Il prodotto (quoziente) di due numeri in notazione scientifica si calcola moltiplicando (dividendo) le mantisse e sommando (sottraendo) gli esponenti. L’elevamento a potenza n di un numero in notazione scientica si calcola elevando a potenza la mantissa e moltiplicando per n l’esponente
Ordini di grandezza (esponente del 10) + 1 se 5 < mantissa <10 Assegnata l’espressione di una grandezza in notazione scientifica, si definisce il suo ordine di grandezza come esponente del 10 se 1 mantissa 5 o.d.g.= (esponente del 10) + 1 se 5 < mantissa <10 e.g. o.d.g. dipende dalle unità di misura scelte.
Esercizi 10. Eseguire le seguenti operazioni 11. La luce emessa dalla stella Proxima Centauri impiega 4 anni per raggiungere la terra. Esprimere la distanza Terra-Proxima in km usando la notazione scientifica. 12. Specificare l’ordine di grandezza dei seguenti numeri: 0,005 ; 0,4; 4000000000; 0,0000045; 0,125; 0,00000678 Aggiungere altri esercizi
PROBLEMI ALLA FERMI Un problema "alla Fermi" è un problema di cui si cerca una soluzione approssimata (spesso è sufficiente dare una stima dell'ordine di grandezza) facendo assunzioni ragionevoli e realistiche su quantità fisiche da utilizzare in semplici formule matematiche per arrivare ad una stima quantitativa della risposta. e.g. Quanti capelli, in media, ha un essere umano ? capelli presenti per millimetro quadro sul cuoio capelluto tra 1 e 10 (~5) area del cranio sfera con diametro 15-25 cm (~20 cm) superficie del cranio coperta dalla capigliaturatra ~ 60%. N. di capelli stimato = 10^5 (ordine di grandezza)
TIPICI PROBLEMI ALLA FERMI Quanti fagioli entrano in una bottiglia da un litro? Qual è l'area della superficie media di un corpo umano? Quante palline da ping-pong occorrerebbero per riempire quest’aula? Quanto pesa tutta l'umanità presente sulla Terra? Quanti passi ci vorrebbero per andare a piedi da Napoli a Roma? Quanta aria si respira in una vita? Quale è la massa del monte Everest? Quanta acqua hai bevuto nel corso della tua vita? Quanti dentisti ci sono a Napoli?
Il valore esatto di una grandezza fisica non può essere misurato. CIFRE SIGNIFICATIVE Cifre significative: numero di cifre eclusi gli zeri iniziali e.g. 1.7 due cifre significative 1.70 tre cifre significative 0.06 una cifra significativa Utile strumento per esprimere la precisione della misura di una grandezza fisica. Il valore esatto di una grandezza fisica non può essere misurato. Cifre significative= #cifre certe + 1 cifra incerta Che differenza c’e’ tra le seguenti misure di lunghezza? 1) x = 3 m 2) x = 3,0 m 3) x = 3,00 m 2. Se la misura della larghezza di una lavagna è 2,50 m cosa intendiamo? Che tipo di strumento stiamo usando? Si tratta di una riga graduata in centimetri? Si tratta di una riga graduata in millimetri? Sensibilità di uno strumento: più piccola variazione che lo strumento sa apprezzare. Precisione di una misura: prima cifra incerta. Coincidono solo se non vi sono errori aggiuntivi dovuti allo sperimentatore (e.g. tempo di reazione con cronometro)
Incertezza assoluta: ultima cifra nota e.g. Tizio e’ alto 1.7m altezza compresa tra 1.65m e 1.75m Incertezza=0.1m (1.75-1.65) e.g. Tizio e’ alto 1.70m altezza compresa tra 1.695m e 1.705m Incertezza=0.01m Incertezza relativa: rapporto tra incertezza assoluta e valore della grandezza. 0.1/1.7~0.06 0.01/1.70~0.01 Spesso le grandezze fisiche vengono calcolate a partire da altre grandezze misurate; l’incertezza delle grandezze misurate determina quelle sulle grandezze calcolate. 1,7 m =170 cm numero di cifre significative diverso?! 1,7 m =1,7 x 10^2 cm 1,70 m=1,70 x 10^2 cm Definizione di incertezza assoluta e relativa nel caso di singola misura. Per misure ripetute Incertezza assoluta= (valore max-valore min)/2 Incertezza relativa= incertezza assoluta/ valore medio
Arrotondamento per eccesso! Regole Pratiche: 1) Il risultato di un calcolo deve essere espresso con un numero di cifre significative pari a quello dei dati E.g. Calcolare il volume di una palla di diametro 25 cm Arrotondamento per eccesso! 2) Nel sommare o sottrarre grandezze fisiche il risultato deve essere scritto in modo tale che l’ultima cifra significativa sia ottenuta come somma o differenza di sole cifre significative: e.g. Cifra non significativa Arrotondamento per difetto!
Esercizi 12. Quante cifre significative hanno i seguenti numeri? 3. Quando si moltiplicano o si dividono due o piu’ grandezze fisiche, il numero di cifre significative del risultato è uguale al minimo numero di cifre significative dei dati iniziali. E.g. 9,283 x 2.6= 24,1358 ~ 24 Esercizi 12. Quante cifre significative hanno i seguenti numeri? 2,50 ; 2,503 ; 0,00103 13. Scrivere il numero di Avogadro e la velocità della luce con tre cifre significative. 14. Calcolare la durata di 1 anno in secondi ed esprimere il risultato in notazione scientifica con due cifre significative. 15. Determinare area e perimetro di una stanza rettangolare larga 10,80 m e lunga 15,3 m, con il corretto numero di cifre significative. 16. Un ciclista percorre 113 km in 2 ore 36 minuti e 41 secondi. E’ corretto affermare che viaggia alla media di 43,278 km/h? 3600 x 24 x365=31536000 Dietro queste regole ci sono le leggi di propagazione degli errori. A=165,24m^2 P=52,20 m