Analisi fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°4.

Slides:



Advertisements
Presentazioni simili
Numeri a 100 Electronic flashcard. 1 uno ritorno.
Advertisements

Dipartimento di Ingegneria Idraulica e Ambientale - Universita di Pavia 1 Caduta non guidata di un corpo rettangolare in un serbatoio Velocità e rotazione.
Presente e futuro della religiosità nel nord est DIFFERENZE TRA GENERAZIONI figli e padri italo de sandre 1ids.
1 MeDeC - Centro Demoscopico Metropolitano Provincia di Bologna - per Valutazione su alcuni servizi erogati nel.
Progetto Qua.ser Indagine di customer satisfaction: Cambio di indirizzo Firenze, 30 giugno 2011.
1 Pregnana Milanese Assessorato alle Risorse Economiche Bilancio Preventivo P R O P O S T A.
“Teoria e metodi della ricerca sociale e organizzativa”
Analisi Fattoriale Tecnica utilizzata per studiare, riassumere e semplificare le relazioni in un insieme di variabili.
Associazione Nazionale Medici Cardiologi Ospedalieri
Analisi Bivariata e Test Statistici
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Analisi Bivariata Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°4.
Analisi fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Analisi Bivariata & Esercizi Analisi Univariata
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°7.
Analisi Bivariata & Esercizi Analisi Univariata Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°4.
Analisi Bivariata e Test Statistici
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°8.
Formati & Analisi fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°8.
Test di associazione - Analisi fattoriale
Analisi fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Analisi fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°6.
Varianza campionaria Errore standard della varianza campionaria
ELEZIONI REGIONALI 2010 PRIMI RISULTATI E SCENARI 14 aprile 2010.
Canale A. Prof.Ciapetti AA2003/04
Test di ipotesi X variabile casuale con funzione di densità (probabilità) f(x; q) q Q parametro incognito. Test Statistico: regola che sulla base di un.
I lavoratori italiani e la formazione UNA RICERCA QUANTITATIVA SVOLTA DA ASTRA, IN COLLABORAZIONE CON DOXA, PER ANES (febbraio 2005)
MP/RU 1 Dicembre 2011 ALLEGATO TECNICO Evoluzioni organizzative: organico a tendere - ricollocazioni - Orari TSC.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% % Accrescimento della PECORA IN TASMANIA % % dal 1820 ad oggi % % ( MODELLO LOGISTICO ) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Cos’è un problema?.
Gli italiani e il marketing di relazione: promozioni, direct marketing, digital marketing UNA RICERCA QUANTITATIVA SVOLTA DA ASTRA RICERCHE PER ASSOCOMUNICAZIONE.
Monitoraggio sugli inserimenti nella scuola superiore a.s. 06/07
OO _60-59_ OI_53-54 _ OL _ OR_52-47_ OO= Orientamento allOBIETTIVO OI= Orientamento all'INNOVAZIONE OL= Orientamento alla LEADERSHIPOR= Orientamento.
CHARGE PUMP Principio di Funzionamento
Settimana: 3-7 marzo Orariolunedimartedi Mercoledi 5 Giovedi 6 Venerdi lezione intro alla fis mod DR lezione intro alla fis mod DR.
Le prime 30 professioni di sbocco per i diplomati in Italia Anno 2012 (valori assoluti e incidenze percentuali) Assunzioni di diplomati (v.a.)* Incidenza.
Regolarità nella griglia dei numeri
Dall’analisi Fattoriale alla regressione lineare
Q UESTIONI ETICHE E BIOETICHE DELLA DIFESA DELLA VITA NELL AGIRE SANITARIO 1 Casa di Cura Villa San Giuseppe Ascoli Piceno 12 e 13 dicembre 2011.
Blue economy Blue economy Maggio Universo di riferimento Popolazione italiana Numerosità campionaria cittadini, disaggregati per sesso,
1 Negozi Nuove idee realizzate per. 2 Negozi 3 4.
ORDINE DI CHIAMATA a 1minuto e 2 minuti PRINCIPALI TEMPI DELLA COMPETIZIONE ORDINE DI CHIAMATA a 1minuto e 2 minuti PRINCIPALI TEMPI DELLA COMPETIZIONE.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°6.
ISTITUTO COMPRENSIVO “G. BATTAGLINI” MARTINA FRANCA (TA)
ANALISI FATTORIALE. Cosè lanalisi fattoriale? Statistica descrittiva Rappresentazione delle variabili in studio. Statistica confermativa vs Confermare,
Esercizi riepilogativi Analisi Univariata e Bivariata Analisi Fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°5.
Introduzione d i: Lucia Centillo Presidente IV Commissione Sanità e Assistenza Città di Torino.
GEOGRAFIA DEI NUMERI Accademia dei Lincei - Roma 18 Ottobre2011
Un trucchetto di Moltiplicazione per il calcolo mentale
Navigazione piana, introduzione pns pnr.
Prima rilevazione sullo stato di attuazione della riforma degli ordinamenti nelle istituzioni scolastiche in LOMBARDIA Attuazione del D.L. 59/2003 a.s.
Estratto per la relazione del Dott. Trevisanato 30 maggio 2008.
Esempi risolti mediante immagini (e con excel)
Classificazione (aka Cluster Analysis)
NO WASTE Progetto continuità scuola primaria scuola secondaria Salorno a.s. 2013_
Minimo comune multiplo
Analisi Fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°8.
Dall’Analisi Fattoriale alla Regressione Lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n° 11.
LEIS03100A - ITALIANO _ Rilevazioni Nazionali Elaborazione a cura di: Marcello Pedone IISS” A. DE PACE” LECCE LEIS03100A - Rilevazioni Nazionali.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Regressione logistica
1 Ministero dell’Istruzione, dell’Università e della Ricerca Dipartimento per la Programmazione e la Gestione delle risorse umane, finanziarie e strumentali.
1 Corso di Laurea magistrale in Psicologia Clinica, dello Sviluppo e Neuropsicologia Esame di Analisi Multivariata dei Dati Introduzione all’analisi fattoriale.
Analisi fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°7.
Analisi fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°7.
Metodi Quantitativi per Economia, Finanza e Management Lezioni n°7-8.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°7.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°8.
Analisi fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°9.
Transcript della presentazione:

Analisi fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°4

Metodi Quantitativi per Economia, Finanza e Management Obiettivi di questa esercitazione: 1 2 3 4 Breve Ripasso Teorico Scelta dei Fattori Interpretazione Fattori Esercizio Riepilogativo

Analisi Fattoriale E’ una tecnica descrittiva/esplorativa per l’analisi delle relazioni lineari (correlazioni) esistenti tra variabili quantitative. Nelle applicazioni è usata anche con variabili qualitative ordinali che esprimono scale di preferenza numeriche (punteggi). A partire da una matrice di dati nxp con p variabili originarie, consente di sintetizzare l’informazione in un set ridotto di variabili trasformate (le componenti/i fattori latenti). Perché sintetizzare? se l’informazione è condivisa tra più variabili correlate tra loro, è ridondante utilizzarle tutte; la sintesi comporta una perdita di informazione non rilevante e semplifica le analisi successive.

Analisi Fattoriale: Introduzione Per estrarre i fattori e quindi stimare dei coefficienti (i LOADINGS), uno dei metodi possibili è il Metodo delle Componenti Principali. Alla matrice dei dati X (nxp) possono essere associate p nuove variabili (componenti principali), ottenute come combinazioni lineari della variabili originali. PROPRIETA’ delle COMPONENTI hanno media nulla hanno varianza pari al proprio autovalore sono tra loro ortogonali (non correlate) Per la stima dei loadings si ricorre agli autovalori e agli autovettori della matrice di correlazione R: di fatto i loadings coincidono con le correlazioni tra le variabili manifeste e le componenti principali.

Step di analisi Numero di fattori Confronto soluzioni scelte Regola Autovalori >1 Lettura SCREEPLOT 1/3 variabili originali Variabilità spiegata 60%-75% Confronto soluzioni scelte Comunalità finali Analisi soluzione Rotazione fattori Interpretazione fattori Produzione dataset con fattori

Metodi Quantitativi per Economia, Finanza e Management Obiettivi di questa esercitazione: 1 2 3 4 Breve Ripasso Teorico Scelta dei Fattori Interpretazione Fattori Esercizio Riepilogativo

PROC FACTOR – Sintassi generale Analisi fattoriale con il metodo delle componenti principali. proc factor data= dataset option(s); var variabile1 … variabile2 variabilen; run;

Analisi Fattoriale - Esempio Gli intervistati hanno espresso, per ciascuna delle 21 caratteristiche del servizio “tariffa telefonica”, un giudizio sull’importanza utilizzando una scala da 1 a 9. VARIABILE DESCRIZIONE immagine_1 l'immagine dell'operatore diffusione_1 la diffusione dell'operatore copertura_1 la copertura della rete dell'operatore assistenza_1 il servizio di assistenza dell'operatore NoScattoRisp_1 l'assenza di scatto alla risposta CostoSMS_1 il costo degli SMS CostoMMS_1 il costo degli MMS AccessoWeb_1 il costo di accesso a internet NavigazioneWeb_1 il costo di navigazione in internet ChiamateTuoOperatore_1 la possibilità di effettuare chiamate a costi inferiori verso numeri dello stesso operatore SMSTuoOperatore_1 la possibilità inviare SMS a costi inferiori verso numeri dello stesso operatore MMSTuoOperatore_1 la possibilità inviare MMS a costi inferiori verso numeri dello stesso operatore vsPochiNumeri_1 le agevolazioni verso uno o più numeri di telefono NumeriFissi_1 le agevolazioni verso numeri fissi AltriOperatori_1 i costi verso altri operatori Autoricarica_1 la possibilità di autoricarica Promozioni_1 la possibilità di attivare promozioni sulle tariffe ChiarezzaTariffe_1 la chiarezza espositiva delle tariffe ComodatoUso_1 la possibilità di rivecere un cellulare in comodato d'uso DurataMinContratto_1 la presenza di una durata minima del contratto CambioTariffa_1 la facilità di cambiamento della tariffa

Esempio variabili

PROC FACTOR - Esempio Analisi fattoriale con il metodo delle componenti principali. PROC FACTOR DATA=CORSO.TELEFONIA SCREE FUZZ=0.3; VAR immagine_1 diffusione_1 copertura_1 assistenza_1 NoScattoRisp_1 CostoSMS_1 CostoMMS_1 AccessoWeb_1 NavigazioneWeb_1 ChiamateTuoOperatore_1 SMSTuoOperatore_1 MMSTuoOperatore_1 vsPochiNumeri_1 NumeriFissi_1 AltriOperatori_1 Autoricarica_1 Promozioni_1 ChiarezzaTariffe_1 ComodatoUso_1 DurataMinContratto_1 CambioTariffa_1; RUN; Scree Plot: grafico di autovalore vs il numero di fattori Stampa solo |loadings| > valore indicato.

Quanti fattori considerare? la regola autovalori > 1 Prendiamo in considerazione tutte le componenti principali con varianza maggiore di 1 (autovalori maggiori di 1) tenendo sotto controllo la % cumulata di varianza spiegata dalle componenti. lettura dello SCREE PLOT (grafico di autovalore vs il numero di fattori) Se il grafico mostra un “gomito” è plausibile ipotizzare l’esistenza di una struttura latente, se la forma è quasi rettilinea significa che i fattori sono solo una trasformazione delle variabili manifeste. I fattori rilevanti sono quelli al di sopra del gomito (a discrezione anche quello in corrispondenza del gomito). Se non ci sono fattori predominanti il criterio è inadatto. rapporto tra numero di componenti e variabili numero di fattori scelti dovrebbe essere circa 1/3 delle variabili originarie percentuale di varianza spiegata >60%

Eigenvalues of the Correlation Matrix: Total Output PROC FACTOR Eigenvalues of the Correlation Matrix: Total = 21 Average = 1   Eigenvalue Difference Proportion Cumulative 1 5.517 3.102 0.263 2 2.414 0.900 0.115 0.378 3 1.514 0.212 0.072 0.450 4 1.302 0.246 0.062 0.512 5 1.056 0.063 0.050 0.562 6 0.994 0.048 0.047 0.609 7 0.946 0.040 0.045 0.655 8 0.905 0.017 0.043 0.698 9 0.888 0.121 0.042 0.740 10 0.767 0.060 0.037 0.776 11 0.707 0.031 0.034 0.810 12 0.676 0.089 0.032 0.842 13 0.587 0.066 0.028 0.870 14 0.521 0.025 0.895 15 0.474 0.035 0.023 0.918 16 0.439 0.021 0.939 17 0.404 0.061 0.019 0.958 18 0.343 0.016 0.974 19 0.294 0.101 0.014 0.988 20 0.193 0.135 0.009 0.997 21 0.058 0.003 1.000 La regola degli autovalori > 1 suggerisce di prendere in considerazione 5 fattori, che spiegano insieme il 56% della varianza totale. %varianza spiegata >60%  GOOD

numero fattori scelti circa 1/3 delle variabili originarie Output PROC FACTOR Lo scree plot mostra un gomito netto in corrispondenza di 5 fattori e uno in corrispondenza di 8 fattori. % DI VARIANZA SPIEGATA: soluzione a 5 fattori: 56% soluzione a 8 fattori: 70% numero fattori scelti circa 1/3 delle variabili originarie

PROC FACTOR - Esempio Confrontiamo la soluzione a 5 e a 8 fattori. PROC FACTOR DATA=CORSO.TELEFONIA SCREE FUZZ=0.3 N=8; VAR elenco variabili; RUN; Consente di specificare il numero di fattori che si vuole estrarre N.B. Quando nella PROC FACTOR non viene indicato il numero di fattori con l’opzione “N = “ SAS adotta la regola degli autovalori >1 per scegliere il numero di fattori.

Values less than 0.3 are not printed. Output PROC FACTOR Factor Pattern   F1 F2 F3 F4 F5 F6 F7 F8 immagine_1 0.33 . 0.46 0.30 diffusione_1 0.31 0.70 copertura_1 0.36 0.43 0.41 -0.33 -0.30 assistenza_1 0.44 -0.42 NoScattoRisp_1 0.53 -0.45 CostoSMS_1 0.34 0.57 CostoMMS_1 0.66 -0.35 -0.31 AccessoWeb_1 0.58 -0.63 NavigazioneWeb_1 -0.64 ChiamateTuoOperatore_1 0.59 SMSTuoOperatore_1 0.54 0.37 MMSTuoOperatore_1 vsPochiNumeri_1 0.48 NumeriFissi_1 0.51 AltriOperatori_1 0.60 Autoricarica_1 -0.41 Promozioni_1 -0.32 ChiarezzaTariffe_1 0.49 ComodatoUso_1 -0.36 DurataMinContratto_1 CambioTariffa_1 Values less than 0.3 are not printed. Analisi delle correlazioni tra fattori non ruotati e variabili (loadings)

Output PROC FACTOR Analisi della % di varianza spiegata   COMUNALITA' FINALI Variabile n=5 n=8 immagine_1 0.55 0.69 diffusione_1 0.75 0.79 copertura_1 0.62 0.73 assistenza_1 0.71 NoScattoRisp_1 0.37 0.59 CostoSMS_1 0.35 0.70 CostoMMS_1 AccessoWeb_1 0.78 0.83 NavigazioneWeb_1 0.77 0.82 ChiamateTuoOperatore_1 SMSTuoOperatore_1 0.74 MMSTuoOperatore_1 0.72 vsPochiNumeri_1 0.51 0.80 NumeriFissi_1 0.42 0.54 AltriOperatori_1 0.58 0.65 Autoricarica_1 0.41 Promozioni_1 0.45 ChiarezzaTariffe_1 0.46 0.60 ComodatoUso_1 0.68 DurataMinContratto_1 0.49 CambioTariffa_1 Totale 11.80 14.65 Analisi della % di varianza spiegata dai fattori (comunalità finali) Per ogni variabile si evidenziano le celle in corrispondenza delle quali la comunalità aumenta in maniera sostanziale per effetto dell’estrazione di un ulteriori fattori (dalla soluzione a 5 fattori alla soluzione a 8 fattori).

Metodi Quantitativi per Economia, Finanza e Management Obiettivi di questa esercitazione: 1 2 3 4 Breve Ripasso Teorico Scelta dei Fattori Interpretazione Fattori Esercizio Riepilogativo

Interpretazione Una volta estratti, i fattori vanno interpretati. Una rotazione ortogonale nello spazio dei fattori non influenza la validità del modello: sfruttiamo questa caratteristica per ottenere dei fattori più facilmente interpretabili! Dobbiamo fare in modo che ognuna delle variabili originali sia molto correlata con al massimo un fattore e poco correlata con gli altri.

Metodi di rotazione La rotazione opera sulla matrice dei loadings. Esistono diversi metodi, tra cui: 1. METODO VARIMAX: minimizza il numero di variabili che hanno correlazioni alte con un fattore 2. METODO QUARTIMAX: minimizza il numero di fattori che hanno correlazioni alte con una variabile 3. METODO EQUIMAX: è una combinazione dei due metodi precedenti IMPORTANTE:la % di varianza complessiva dei fattori ruotati rimane inalterata, mentre si modifica la % di varianza spiegata da ciascun fattore

PROC FACTOR - Esempio Operiamo una rotazione dei fattori con il metodo Varimax. PROC FACTOR DATA=CORSO.TELEFONIA N=8 FUZZ=0.35 OUT=CORSO.FACTORS ROTATE=VARIMAX REORDER; VAR elenco variabili; RUN; Produce in output un data set che contiene le variabili originali e i fattori non ruotati Specifica che il criterio per la rotazione dei fattori Ordina le variabili in modo da facilitare la lettura dei loadings

Rotated Factor Pattern Values less than 0.35 are not printed. Output PROC FACTOR Rotated Factor Pattern   Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8 CostoMMS_1 0.82 . MMSTuoOperatore_1 0.81 AccessoWeb_1 0.77 NavigazioneWeb_1 0.72 ChiarezzaTariffe_1 0.69 Promozioni_1 0.68 Autoricarica_1 0.64 NoScattoRisp_1 0.66 AltriOperatori_1 0.62 0.35 NumeriFissi_1 0.55 ChiamateTuoOperatore_1 0.49 CostoSMS_1 0.78 SMSTuoOperatore_1 DurataMinContratto_1 ComodatoUso_1 0.74 CambioTariffa_1 0.40 copertura_1 0.83 assistenza_1 0.36 0.52 -0.40 diffusione_1 immagine_1 0.76 vsPochiNumeri_1 0.84 Values less than 0.35 are not printed.

Output PROC FACTOR COSTI SECONDARI VANTAGGI COSTI CHIAMATE Rotated Factor Pattern   Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8 CostoMMS_1 0.82 . MMSTuoOperatore_1 0.81 AccessoWeb_1 0.77 NavigazioneWeb_1 0.72 ChiarezzaTariffe_1 0.69 Promozioni_1 0.68 Autoricarica_1 0.64 NoScattoRisp_1 0.66 AltriOperatori_1 0.62 0.35 NumeriFissi_1 0.55 ChiamateTuoOperatore_1 0.49 CostoSMS_1 0.78 SMSTuoOperatore_1 DurataMinContratto_1 ComodatoUso_1 0.74 CambioTariffa_1 0.40 copertura_1 0.83 assistenza_1 0.36 0.52 -0.40 diffusione_1 immagine_1 0.76 vsPochiNumeri_1 0.84 Values less than 0.35 are not printed. COSTI SECONDARI VANTAGGI COSTI CHIAMATE COSTI CHIAMATE SMS SMS CONDIZIONI CONTRATTUALI SERVIZI OPERATORE VALORE DEL BRAND VS POCHI NUMERI

Fattori Una volta scelta la soluzione ottimale, è possibile utilizzare i fattori ottenuti come nuove “macro-variabili” da inserire in ulteriori analisi sul fenomeno indagato, al posto delle variabili originarie; Nel file di dati si potranno aggiungere 8 nuove variabili: Costi secondari, Vantaggi, Costi chiamate, SMS, Condizioni contrattuali, Servizi Operatore, Valore del Brand, Vs pochi numeri. si tratta di variabili standardizzate (ovvero a media nulla e varianza unitaria),

Metodi Quantitativi per Economia, Finanza e Management Obiettivi di questa esercitazione: 1 2 3 4 Breve Ripasso Teorico Scelta dei Fattori Interpretazione Fattori Esercizio Riepilogativo

PROC FACTOR – Opzioni Analisi fattoriale con il metodo delle componenti principali. PROC FACTOR DATA=CORSO.TELEFONIA N=8 FUZZ=0.35 SCREE OUT=CORSO.FACTORS ROTATE=VARIMAX REORDER; VAR elenco variabili; RUN; OPZIONE DESCRIZIONE OUT =dataset Produce in output un data set che contiene le variabili originali e i fattori non ruotati N=num Consente di specificare il numero di fattori che si vuole estrarre ROTATE=metodo Specifica che il criterio per la rotazione dei fattori (VARIMAX, …) SCREE Produce scree plot REORDER Ordina le variabili in modo da facilitare la lettura dei loadings FUZZ=valore Stampa solo |loadings| > valore indicato.

Step di analisi (1/2) STEP 1: scegliere quanti fattori considerare (scelta di varie soluzioni) la regola autovalori > 1 lettura dello SCREE PLOT Circa 1/3 delle variabili originarie Variabilità spiegata tra 60% e 75% STEP 2: confrontare le soluzioni scelte cumunalità finali PROC FACTOR DATA=data set SCREE FUZZ=k; VAR elenco variabili; RUN; PROC FACTOR DATA=data set SCREE FUZZ=k N=n; VAR elenco variabili; RUN;

Step di analisi (2/2) STEP 3: una volta scelta la soluzione finale ruotare i fattori interpretare i fattori salvare il data set con i fattori STEP 4: se l’interpretazione non è soddisfacente ripetere lo step n°3 variando metodo di rotazione o provando un’altra soluzione. PROC FACTOR DATA=data set SCREE FUZZ=k OUT=data set output ROTATE= metodo di rotazione REORDER N=n; VAR elenco variabili; RUN;

Analisi Fattoriale - Esercizio 2 Il data set ECONOMIC_FREEDOM contiene i seguenti indicatori relativi alla libertà economica nei diversi stati del mondo. Svolgere un’analisi fattoriale a partire da tali indicatori. COUNTRY Nome del paese CONTINENTE AF-Africa; AM-America Nord; AS-Asia; OC-Oceania; EU-Europa A. Attività del settore pubblico e tassazione A_ GVT_CONSUMPT Consumi pubblici  Rapporto tra consumi pubblici e consume totali (indice) A_ GVT_INVEST Investimenti pubblici  Rapporto tra investimenti pubblici e investimenti totali (indice) B_JUD_IMPART Imparzialità delle corti: contesto legale in cui i privati possono opporsi legalmente ad azioni del governo. B_MILITARY_POL Interferenza militare nel sistema giudiziario e politico (indice elevato se l’interferenza è bassa) B_LAW_INTEGRITY Integrità del sistema giudiziario C. Accesso al contante C_GR_MONEY_SUPPLY Crescita media annuale dell’offerta di moneta (ultimi 5 anni) ‑ Crescita media annuale PIL (ultimi 10 anni) C_INFL Tasso di inflazione recente (indice alto se inflazione bassa) C_STD_INFL Variabilità del tasso di inflazione negli ultimi 5 anni. (indice alto se inflazione stabile) C_FREEDOM_BANK Libertà di possedere conti presso banche straniere nel paese o all’estero D. Commercio internazionale D_TARIF Tasse sul commercio con l’estero (indice alto se tasse basse e poco variabili) D_ACTUAL_EXP_TRADE Dimensione del settore del commercio internazionale rispetto a quella attesa D_INT_CAP_CONTROL Livello del controllo sul mercato dei capitali internazionali (indice elevato se è elevata la libertà di accesso ai capitali e ai mercati internazionali) E. Regolamentazione del credito, del lavoro e del business E_CREDIT_REG Regolamentazione del mercato del credito (indice elevato se c’è concorrenza con banche straniere, se molte banche sono private, se il credito al settore privato è elevato, se i tassi di interesse sono determinati dal libero mercato) E_NEW_BUSINESS Faciltà e trasparenza nella realizzazione di nuovi business

Soluzione es 2 (1/7) Estrazione fattori: PROC FACTOR DATA=CORSO.ECONOMIC_FREEDOM SCREE FUZZ=0.35 ; VAR A_GVT_CONSUMPT A_GVT_INVEST B_JUD_IMPART B_LAW_INTEGRITY B_MILITARY_POL C_FREEDOM_BANK C_GR_MONEY_SUPPLY C_INFL C_STD_INFL D_ACTUAL_EXP_TRADE D_INT_CAP_CONTROL D_TARIF E_CREDIT_REG E_NEW_BUSINESS ; RUN;

Soluzione es 2 (2/7) Quanti fattori considerare? Autovalori AUTOVALORI   Eigenvalue Difference Proportion Cumulative 1 5.7462 4.0829 0.4104 2 1.6633 0.2815 0.1188 0.5293 3 1.3818 0.3921 0.0987 0.6280 4 0.9898 0.1855 0.0707 0.6986 5 0.8043 0.0997 0.0574 0.7561 6 0.7046 0.0992 0.0503 0.8064 7 0.6053 0.1194 0.0432 0.8497 8 0.4859 0.0524 0.0347 0.8844 9 0.4335 0.0979 0.0310 0.9153 10 0.3356 0.0733 0.0240 0.9393 11 0.2623 0.0098 0.0187 0.9580 12 0.2525 0.0544 0.0180 0.9761 13 0.1981 0.0613 0.0142 0.9902 14 0.1368 1.0000 La regola degli autovalori > 1 suggerisce di prendere in considerazione 3 fattori, che spiegano insieme il 63% della varianza totale. Lo scree plot mostra un gomito netto in corrispondenza di 2 fattori e uno ‘accennato’ in corrispondenza di 4 fattori.

Soluzione es 2 (3/7) Estrazione fattori per la soluzione a 2 e a 4 fattori: PROC FACTOR DATA=CORSO.ECONOMIC_FREEDOM SCREE FUZZ=0.35 N=2; VAR lista variabili; RUN; PROC FACTOR DATA=CORSO.ECONOMIC_FREEDOM SCREE FUZZ=0.35 N=4; VAR lista variabili; RUN; N.B. La soluzione a 3 fattori l’abbiamo già estratta: quando nella PROC FACTOR non viene indicato il numero di fattori con l’opzione “N = “ SAS adotta la regola degli autovalori >1 per scegliere il numero di fattori.

Soluzione es 2 (4/7) Variable LOADINGS CUMUNALITA' Prin1 Prin2 Prin3 Prin4 n=2 n=3 n=4 A_GVT_CONSUMPT -0.73   0.31 0.53 0.62 0.72 A_GVT_INVEST 0.64 0.35 0.42 0.54 B_JUD_IMPART 0.79 -0.38 0.77 0.78 B_MILITARY_POL 0.8 0.65 0.66 B_LAW_INTEGRITY 0.67 0.69 C_GR_MONEY_SUPPLY 0.43 0.63 0.75 C_INFL 0.45 C_FREEDOM_BANK 0.6 -0.45 0.46 0.56 0.83 C_STD_INFL 0.55 0.51 D_TARIF 0.58 D_ACTUAL_EXP_TRADE -0.72 0.38 0.07 0.73 D_INT_CAP_CONTROL -0.4 0.41 0.59 0.82 E_CREDIT_REG -0.54 0.74 E_NEW_BUSINESS 0.70 Per ogni variabile si evidenziano le celle in corrispon-denza delle quali la comunalità aumenta in maniera sostanziale per effetto dell’estra-zione di un ulteriore fattore. La soluzione a 2 fattori non fornisce una spiegazione adeguata di alcune variabili: tali variabili hanno probabilmente un alto contenuto di specificità. La soluzione a 4 sarebbe motivata dal recupero di capacità esplicativa solo su un paio di variabili. Inoltre per ogni variabile la % di varianza spiegata dati fattori è già soddisfacente e non aumenta in maniera sostanziale per effetto dell’estrazione del quarto fattore.

Soluzione es 2 (5/7) Consideriamo la soluzione a 3 fattori e operiamo una rotazione dei fattori con il metodo Varimax. PROC FACTOR DATA=CORSO.ECONOMIC_FREEDOM OUT=CORSO.FACTORS N=3 ROTATE=VARIMAX REORDER FUZZ=0.35; VAR lista variabili; RUN; IMPORTANTE:la % di varianza complessiva dei fattori ruotati rimane inalterata, mentre si modifica la % di varianza spiegata da ciascun fattore

Soluzione es 2 (6/7) Interpretazione fattori: Variabile Descrizione Factor1 Factor2 Factor3 C_FREEDOM_BANK Libertà conti c/o banche stran. o estero 0.87   D_INT_CAP_CONTROL Libertà di accesso a cap. e mkt internaz. 0.77 D_TARIF Basse tasse su comm. con estero 0.71 A_GVT_INVEST Investimenti pubblici 0.62 0.39 B_MILITARY_POL Bassa Interf. militare 0.58 0.52 E_CREDIT_REG Regolament. mkt credito 0.54 B_JUD_IMPART Imparzialità delle corti 0.76 E_NEW_BUSINESS Faciltà realizz. newbusiness 0.44 0.69 D_ACTUAL_EXP_TRADE Dim. settore comm. internaz. B_LAW_INTEGRITY Integrità sist. giudiz. 0.61 A_GVT_CONSUMPT Consumi pubblici -0.66 C_INFL Bassa infl. recente 0.79 C_GR_MONEY_SUPPLY Crescita offerta di moneta 0.78 C_STD_INFL Bassa variab. tasso infl. 0.7 LIBERTA’ DI CAPITALI LIBERTA’ DI BUSINESS MONETA Estraendo 3 fattori riusciamo a spiegare il 63% della varianza totale.

Soluzione es 2 (7/7) Varianza spiegata dai fattori: La % di varianza complessiva dei fattori ruotati rimane inalterata, mentre si modifica la % di varianza spiegata da ciascun fattore PRIMA DELLA ROTAZIONE Varianza spiegata da ciascun fattore Totale Factor1 Factor2 Factor3 5.75 1.66 1.38 8.79 DOPO LA ROTAZIONE Varianza spiegata da ciascun fattore Totale Factor1 Factor2 Factor3 3.55 2.83 2.41 8.79