Modelli Globali: Ray Tracing

Slides:



Advertisements
Presentazioni simili
Le onde elettromagnetiche
Advertisements

L’ IPERBOLE.
Ricorrenze Il metodo di sostituzione Il metodo iterativo
Ombre e riflessioni in tempo reale
LEZIONI DI OTTICA per le scuole medie Dott
COORDINATE POLARI Sia P ha coordinate cartesiane
Principali processi nell’interazione luce materia
Ottica geometrica 1 18 gennaio 2013
Rendering È quel processo di creazione di un’immagine bidimensionale a partire da un modello tridimensionale Tale immagine deve tendere a rappresentare.
LEZIONI DI OTTICA.
Prova di recupero corso di Fisica 4/05/2004 Parte A
MODELLI LUCE.
Sistemi Multimediali II Marco Tarini Università dellInsubria Facoltà di Scienze MFN di Varese Corso di Laurea in Informatica Anno Accademico 2004/05 Lezione.
Computer Graphics Marco Tarini Università dellInsubria Facoltà di Scienze MFN di Varese Corso di Laurea in Informatica Anno Accademico 2004/05 Lezione.
Computer Graphics Marco Tarini Università dellInsubria Facoltà di Scienze MFN di Varese Corso di Laurea in Informatica Anno Accademico 2006/07 Lezione.
Costruzione di Interfacce Lezione 15 Rendering Locale e Globale
Applicazioni progettuali di grafica computerizzata a.a. 2008/2009 Rendering grafico.
FENOMENI INTERFERENZIALI
RIFLESSIONE E RIFRAZIONE DELLE ONDE E.M.
Architetture per la sintesi di immagini Daniele Marini Gennaio 2000.
OTTICA Ottica geometrica Ottica fisica Piano Lauree Scientifiche
1 Modelli di Illuminazione Daniele Marini. 2 Obiettivo Visualizzare scene cercando di simulare al meglio la realtà Interazione luce-materiali –Modellare.
Modelli Globali Daniele Marini.
1 Superfici nascoste Daniele Marini. 2 Ray casting adatto a CSG o superfici parametriche dipende dal punto di vista è una sorta di campionamento spaziale.
Smoothing Daniele Marini.
Il calcolo di radiosity
1 Modelli Globali Radiosity Daniele Marini. 2 Radiosity Bilancio radiativo in un ambiente chiuso (senza scambio di energia con lesterno) Indipendente.
Infomatica Grafica a.a DICGIM – University of Palermo Dipartimento di Ingegneria Chimica, Gestionale, Informatica e Meccanica Environment Mapping.
La luce Quale modello: raggi, onde, corpuscoli (fotoni)
Illuminamento e Shading
Modelli d’illuminazione locale radiometrici
LA PARABOLA.
Modelli di Illuminazione 1- Modelli locali
LA NATURA DELLA LUCE Di Claudia Monte.
Davide Gadia Davide Selmo
Modelli Globali e metodo di Radiosity
Daniele Marini, Maurizio Rossi
Texturing - Tessiture Daniele Marini.
Le ombre proiettate Daniele Marini.
Dal modello alla visualizzazione: Verso il foto realismo Daniele Marini.
lavoro di scienze sulla luce
Onde 10. I raggi luminosi (I).
Modelli d’illuminazione locale radiometrici
Superfici nascoste Daniele Marini.
Modelli Globali: il metodo di Radiosity
1 Visualizzazione scientifica Daniele Marini. 2 Visualizzazione scientifica Trovare un modo per rendere i risultati di un calcolo scientifico, o rilevati.
La luce E’ una particolare forma di energia detta
Pippo.
Modelli di Illuminazione
Intersezioni e distanze
Intersezioni e distanze
Ombre e riflessioni in tempo reale Daniele Marini Parzialmente tratte de: Haines-M ö ller Corso di Programmazione Grafica aa2006/2007.
Ombre e riflessioni in tempo reale Daniele Marini Parzialmente tratte de: Haines-M ö ller Corso di Programmazione Grafica aa2005/2006.
Intersezioni e distanze Daniele Marini Corso di Programmazione Grafica per il Tempo Reale.
Modelli di Illuminazione Modelli locali
L’insegnamento della fisica e delle scienze nella scuola; proposte operative per un approccio laboratoriale low-cost no cost Raggi, Fasci di Luce ed Ombre.
L'ottica studia i fenomeni luminosi.
La propagazione della luce
LA LUCE.
OTTICA Ottica geometrica Ottica fisica Progetto Lauree Scientifiche
Modelli Globali: Ray Tracing
Esercizi numerici 1) Secondo le norme dell’Agenzia Regionale Prevenzione e Ambiente dell’Emilia-Romagna per l’esposizione ai campi a radiofrequenza, il.
Prova di esame di Fisica 4 - A.A. 2006/7 I prova in itinere 30/3/07 COGNOME…………..……………………… NOME. …………… ……… ) Un raggio di luce monocromatica.
Prova di recupero corso di Fisica 4 8/05/2006 I parte
LEZIONI DI OTTICA.
1 Smoothing Daniele Marini. 2 Calcoli sui vettori Vettore normale equazione del piano: ax+by+cz+d=0; si può anche scrivere come luogo: e p è un qualunque.
Prova di esame di Fisica 4 - A.A. 2009/10 I appello febbraio 8/2/15 COGNOME…………..……………………… NOME. …………… ……… ) Un prisma isoscele di vetro,
Ottica geometrica. I raggi di luce Un raggio di luce è un fascio molto ristretto che può essere approssimato da una linea sottile. In un mezzo omogeneo,
Le Fibre Ottiche 15/10/2013. Willebrord Snel van Royen, latinizzato come Willebrordus Snellius o semplicemente Snellius (Leida, 1580 – Leida, 30 ottobre.
Transcript della presentazione:

Modelli Globali: Ray Tracing Daniele Marini, Maurizio Rossi

Limiti dei modelli di illuminazione locale I modelli di illuminazione Flat, Gouraud, Phong, Cook-Torrance e He-Torrance forniscono una risposta approssimata al seguente quesito: nota la luce che arriva in un punto di una superficie quanto vale la luce che riflette sulla superficie? Il problema è analizzato a livello locale sulla superficie del materiale considerato e per questa ragione sono detti modelli di illuminazione locale Ma… da dove proviene la luce?

Modelli globali La luce che giunge in un punto può originare da: Sorgenti luminose (illuminazione diretta) Riflessa e/o rifratta da altri oggetti (illuminazione indiretta, può contribuire dal 40 al 100% della illuminazione di un interno) Diffusa dall’atmosfera (illuminazione diffusa, generalmente ininfluente negli interni, importante negli esterni: luce del cielo)

Il rendering Osservazione: come può il modello di illuminazione locale quantificare la luce che arriva in un punto della superficie di altri oggetti? Lambert: considera solo la luce che arriva direttamente dalle sorgenti Gouraud e Phong oltre alla illuminazione diretta introduce un temine di luce ambientale costante che approssima sia l’illuminazione indiretta che quella diffusa

Modelli globali Un calcolo corretto delle componenti di illuminazione diretta e indiretta comporta una analisi della geometria e degli oggetti dell’ambiente considerato La soluzione a questo problema è data dai modelli di illuminazione globale: Ray tracing, Radiosity Rifrazione (Snell) e immagine riflessa nello specchio sono due esempi di effetti ottenibili grazie al calcolo del modello globale (ray tracing) Il calcolo del modello globale richiede tempo!

Modelli e metodi di rendering Nei metodi locali: modello di illuminazione + shading (+ smoothing) Metodi globali: modelli di illuminazione più accurati + rendering 2 metodi principali View dependent (Ray Tracing) View independent (Radiosity)

Dipendente dalla vista: Ray tracing Simula il percorso dei raggi luminosi Modello di illuminazione: Whitted = Phong + Estensioni ricorsive

Indipendente dalla vista: Radiosity Simula il bilancio energetico in un ambiente chiuso Modello locale Lambertiano + Estensioni

Equazione fondamentale del rendering Kajia 1986

Equazione fondamentale del rendering x’’ x x’

Modello di Whitted: Ray Tracing È un modello ibrido, unisce aspetti locali (Phong) e globali (ricorsione) Il raggio che giunge al pixel nella direzione di COP è il risultato di: Raggio iniziale+ Raggio trasmesso ricorsivamente + Raggio riflesso ricorsivamente Metodo ricorsivo, albero delle riflessioni e trasmissioni multiple

Il rendering: Ray tracing Nel Ray tracing l’immagine viene ricostruita punto per punto partendo dal piano immagine

Ray tracing Nel Ray tracing l’immagine viene ricostruita punto per punto partendo dal piano immagine e percorrendo i raggi di luce a ritroso seguendo le regole dell’ottica geometrica

Ray casting Raggi ombra (shadow) Specchi (mirror) Raggi trasmessi e riflessi

scena Albero corrispondente

Ray tracing Quando un raggio incontra un oggetto si applica il modello di illuminazione locale e il raggio viene propagato ricorsivamente in: Un raggio riflesso specularmente (se ks > 0), è così possibile vedere oggetti riflessi su altri Un raggio rifratto specularmente (se kt > 0), è così possibile vedere oggetti attraverso altri Tanti raggi diretti verso le sorgenti luminose per determinare se sono visibile direttamente, è così possibile calcolare le ombre

Ray tracing Il processo ricorsivo termina: Se un raggio non colpisce nulla Dopo un certo numero massimo prestabilito di riflessioni/rifrazioni Limite del modello: non viene calcolata la luce che proviene per riflessione/trasmissione diffusa da altri oggetti e questa componente viene approssimata con un termine costante di luce ambientale

Ray tracing kt: coefficiente di trasmissione 0  kt  1 luce ambiente componente trasmessa ricorsiva componente riflessa ricorsiva modello di illuminazione applicato a ls sorgenti di illuminazione kt: coefficiente di trasmissione 0  kt  1 gj: funzione di occlusione rispetto alla j-esima sorgente di luce; gj=0 (ombra) gj=1 (non in ombra)

Ray Tracing Il modello di illuminazione globale aumenta il realismo nel calcolo della illuminazione solo Phong Phong + Ray tracing

Ray Tracing Il modello di illuminazione globale aumenta il realismo nel calcolo della illuminazione

Problemi I raggi sono tracciati da COP in direzione opposta alla propagazione della luce (backward Ray Tracing) La complessità dipende dall’efficienza della ricerca dell’intersezione (problema di search) Calcolo intersezioni critico !! Ottimizzazioni possibili: Bounding volumes Suddivisione uniforme dello spazio Parallelizzazione

Il calcolo delle intersezioni: esempio Intersezione raggio/sfera - soluzione algebrica Definiamo un raggio da COP al pixel sul piano immagine con l’equazione parametrica: Per t<0 i punti sul raggio sono dietro COP, t=0 va evitato per problemi numerici

Intersezione raggio/sfera Equazione sfera: Sostituire equazione raggio in equazione sfera e si risolve l’eq. Di secondo grado rispetto a t

Intersezione raggio/sfera Equazione quadratica, 2 soluzioni: Se complesse non c’è intersezione Se reali ordinare le soluzioni t0 e t1: il minimo rappresenta la prima intersezione Il punto intersezione (xi,yi,zi) è: La normale alla superficie è:

Complessità del calcolo intersezione raggio/sfera Passi: Calcolare coefficiente eq. II grado: 8 + e -, 7 * Calcolo discriminante: 1-, 2*, 1= Determinazione intersezione minima, eventuale calcolo della seconda: 1-, 1*, 1 sqrt, 1=; eventuale seconda: 1-,1*, 1= Calcolo punto intersezione: 3+, 3* Calcolo normale al punto: 3-, 3* Totale: 17 + o – 17*, 1 sqrt, 3=

Intersezione raggio/sfera: soluzione geometrica Origine retta interna alla sfera? Calcola intersezione Se l’origine è esterna verifica direzione retta, se t è negativo la retta si allontana: no intersezione Trova distanza retta da centro t orig t orig

Intersezione raggio/sfera: soluzione geometrica Se la distanza retta-centro è minore del raggio della sfera calcola intersezione Numero operazioni totale: 16+ o - 13* 1 sqrt 3=

Altri effetti Ray tracing distribuito: Ray tracing a due passate: Motion blur Profondità di campo Ray tracing a due passate: Simula scattering della luce attraverso un mezzo (acqua, vetro) I passo: nella direzione della luce (forward ray tracing) II passo: dalla posizione occhio (backward ray tracing) Definizione spettrale delle sorgenti di luce Tessiture (superficiali e volumetriche)

Ray tracing distribuito Ogni pixel viene sovracampionato, ad es. 3x3 volte Le posizioni dei pixel sovracampionati possono essere regolari o casuali (jittering) Il pixel assume un valore come media dei campioni Jittering consiste nel perturbare la posizione dei sovracampioni rispetto a una loro distribuzione regolare

Jittering Se i campioni sono prevalentemente al centro si ha rumore minimo ma alto aliasing Se i campioni sono meno concentrati al centro si ha meno aliasing e più rumore Si può predisporre una matrice di jitter con una distribuzione Gaussiana

Profondità di campo Occhio e lente fotografica hanno un’apertura finita; ogni punto appare come un piccolo cerchio sul piano immagine: cerchio di confusione L’immagine prodotta dal foro stenopeico è perfettamente a fuoco

Profondità di campo Cook, Porter, Carpenter - 1984

Jittering per profondità di campo Se il punto campionato è sul piano focale, i punti jittered sono assai vicini e la loro media non si scosta troppo dal valore del punto centrale Se il punto campionato è lontano dal piano focale i punti jittered sono distanti e la loro media crea un effetto di sfocatura

Ray tracing distribuito e jittering Può essere usato anche per Simulare di soft shadows e soft reflections Cook, Porter, Carpenter - 1984

Jittering per motion blur Si può sovracampionare l’immagine temporalmente, usando matrice di jitter a istanti di tempo distinti La maggiore velocità di un oggetto esalta l’effetto mosso

Motion blur Cook, Porter, Carpenter - 1984