La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Metodi statistici per l’analisi economica - a.a

Presentazioni simili


Presentazione sul tema: "Metodi statistici per l’analisi economica - a.a"— Transcript della presentazione:

1 Metodi statistici per l’analisi economica - a.a. 2016-2017
Gli indicatori regionali di attività economica -RegiosS, Cycles & Trends Dott.ssa Federica Benni Lezione del 29 Marzo 2017

2 Il ciclo economico L’analisi delle variazione dell’attività economica
globale spinge gli economisti ad una definizione di ciclo economico: Una fluttuazione nell’attività economica globale (Mitchell, 1927)

3 Il ciclo economico Una fluttuazione nell’attività economica globale in cui si distinguono 4 fasi: crisi reddito espansione Contrazione trend ripresa tempo

4 Gli indicatori di sviluppo economico:
sono un utile strumento per i policy-maker per conoscere ed analizzare le singole realtà territoriali; di fondamentale importanza per lo studio dello sviluppo locale; permettono di analizzare le caratteristiche del ciclo economico locale e di avere un’istantanea delle condizioni economiche congiunturali di ciascun territorio.

5 I dati regionali disponibili
Il prodotto interno lordo è la variabile comunemente utilizzata come indicatore della crescita economica di un Paese o di una regione ma: l’Istat produce le statistiche dei conti economici territoriali con notevole ritardo e a cadenza annuale. Però a livello regionale è disponibile un ampio set di variabili a frequenza elevata.

6 I dati regionali Indagine sulla fiducia delle imprese (fonte Istat);
Indagine sulla fiducia dei consumatori (fonte Istat); Esportazioni e importazioni (fonte Istat); Rilevazione sulle forze di lavoro (fonte Istat); Demografia delle imprese (fonte Unioncamere); Immatricolazioni di automobili (fonte Unrae); Prezzi al consumo (fonte Istat).

7 Indagini sulla fiducia
Rilevazione imprese manifatturiere: Indagine mensile riferita al mese corrente; 18 domande finalizzate ad ottenere una valutazione dell’andamento dell’economia corrente e sulle aspettative delle imprese per il prossimo futuro in relazione alle principali variabili aziendali. Rilevazione sulla fiducia dei consumatori: 15 domande riguardanti l’opinione dei consumatori sulla situazione economica generale e personale;

8 Dati Istat Esportazioni - Importazioni :
Serie mensili scaricabili dal sito dell’Istat; Dati disponibili dal 1991 e aggiornati con circa due-tre mesi di ritardo rispetto alla data corrente. Rilevazione sulle forze di lavoro: Rilevazione continua, i dati vengono raccolti in tutte le settimane dell’anno; Dati diffusi con frequenza trimestrale. Prezzi al consumo: Dati a frequenza mensile, pubblicati quindici giorni dopo la fine del mese di riferimento.

9 Dati regionali Demografia delle imprese:
Serie trimestrali delle imprese attive, iscritte e cessate presenti sul territorio; Dati pubblicati quindici giorni dopo la fine del periodo di riferimento e disponibili on-line sul sito di Infocamere. Immatricolazioni di automobili: Dati mensili disponibili con un ritardo di circa un mese rispetto alla data corrente.

10 Variabili utilizzate nell’analisi

11 Trasformazioni effettuate
Variabili dell’indagine sulla fiducia delle imprese e dei consumatori: standardizzazione. Prezzi al consumo e dati contesto internazionale 1) Differenze prime, 2) Standardizzazione. Immatricolazioni di automobili 1) Variazione anno/anno,

12 Trasformazioni effettuate
Dati commercio estero: 1) Destagionalizzare i dati, 2) Variazione anno/anno, 3) Standardizzazione delle serie. Dati mercato del lavoro 2) Serie degli occupati variazione anno/anno, 3) Standardizzazione delle sei serie. Dati movimprese 3) Standardizzazione.

13 Fondamenti metodologici
Modelli dinamici fattoriali - Diffusion Indexes (Stock e Watson, 1998) Criteri informativi - Panel Information Criteria (Bai e Ng, 2002) Algoritmo EM (Expectation Maximization) - Stock e Watson 2002

14 Modelli dinamici fattoriali (Stock e Watson, 1998)
Siano: - yt la serie storica della variabile oggetto di studio - Xt una serie storica N-dimensionale che contiene informazioni utili per prevedere yt+1 Xt viene definita dalla struttura fattoriale:

15 Modelli dinamici fattoriali (Stock e Watson, 1998)
Se l’obiettivo è individuare , allora: dove

16 Modelli dinamici fattoriali (Stock e Watson, 1998)
Modello fattoriale statico: , et serialmente incorrelati, Ft ed {eit} mutuamente incorrelati ed i.i.d.; Modello fattoriale statico approssimato: i fattori idiosincratici possono essere “debolmente” correlati tra le serie; Modello fattoriale dinamico statico: è una riscrittura di un modello fattoriale dinamico standard in modo da rendere statica la matrice dei punteggi fattoriali.

17 Modelli dinamici fattoriali (Stock e Watson, 1998)
Si assuma che: Xt panel bilanciato eit serialmente indipendenti

18 Modelli dinamici fattoriali (Stock e Watson, 1998)
Minimizzare Individuare lo stimatore che minimizza il quadrato degli scarti, dove

19 Modelli dinamici fattoriali (Stock e Watson, 1998)
sono gli elementi che minimizzano la funzione obiettivo e soddisfano le seguenti condizioni:

20 Criterio Informativo (Bai e Ng, 2002)
Sia la matrice stimata per un numero k di fattori; Sia la funzione obiettivo da minimizzare; Allora, la scelta del numero corretto k di fattori andrà effettuata minimizzando una funzione del tipo in cui g è funzione sia di N che di T.

21 Criterio Informativo (Bai e Ng, 2002)
dove

22 Algoritmo EM (Stock e Watson, 2002)
Funzione obiettivo da minimizzare: dove Iit=1 se Xit è un valore osservato e Iit =0 altrimenti La j-esima iterazione è calcolata come:

23 Algoritmo EM (Stock e Watson, 2002)
La serie mensile non osservata Xit viene misurata solo al tempo aggregato Xqit , dove: Xqit= (1/11)*(Xi,t-11+Xi,t-11+…..+Xit) per t= 12, 24, 36… e Xqit è un dato mancante per tutti gli altri valori di t Nella j-esima iterazione gli elementi del panel stimato sono costruiti come: se Xit è osservato e altrimenti.

24 Individuazione numero dei fattori
1) load c:\Emilia.txt; x =Emilia; lags = 0; fact = 4; 2) icp1 = log(vkf)+fact*((n+t)/(n*t))*log((n*t)/(n+t)); icp2 = log(vkf)+fact*((n+t)/(n*t))*log(c2nt); icp3 = log(vkf)+fact*(log(c2nt)/c2nt); 3) x = x(1:t,:); [t,n] = size(x); [factors, lam, ma] = factloa(x,fact,lags); vartot = trace(diag(ma)); explvar = zeros(fact,1); for j = 1:fact; explvar(j) = ma(n*(1+lags)-j+1)/vartot;

25 Numero di fattori estratti
L’informazione contenuta nelle 38 variabili è stata sintetizzata in: 4 fattori: Emilia-Romagna, Friuli Venezia Giulia, Lazio, Abruzzo; 3 fattori: Piemonte, Trentino Alto Adige, Veneto, Toscana, Umbria, Marche, Basilicata; 2 fattori: Lombardia, Calabria, Puglia, Sardegna, Valle d’Aosta; 1 fattore:, Liguria, Molise, Campania, Sicilia.

26 Costruzione dell’indicatore di attività economica regionale
Fase 1 : Ristimare il modello fattoriale inserendo i valori del Pil annuale e delle 38 variabili, applicando l’algoritmo EM per interpolare la serie del tasso di crescita del Pil. Fase 2 : Riapplicare l’algoritmo EM considerando le ultime osservazioni del Pil a frequenza mensile come dati mancanti; Proiettare i tassi di crescita del Pil a frequenza mensile fino a giugno 2016 e aggiungere questi dati ai valori ottenuti dalla precedente interpolazione.

27 Indicatore di attività economica (Emilia-Romagna)
Fonte: nostre elaborazioni su dati Isae, Istat, Unioncamere e Unrae

28 Gli indicatori di macroarea
Fonte: nostre elaborazioni su dati Isae, Istat, Unioncamere e Unrae L’indice è calcolato come media ponderata dei singoli indicatori delle regioni appartenenti alla macroarea. I pesi utilizzati per la ponderazione sono ottenuti dal rapporto tra il Pil della regione e quello della macroarea, utilizzando l’ultimo aggiornamento disponibile nelle serie dei conti economici territoriali: Pil regionale -2014/ Pil macroarea -2014

29 Gli indicatori Coincidenti
Alcune delle variabili utilizzate per la stima degli indicatori non sono aggiornate tempestivamente: mercato del lavoro, commercio estero. Per la stima di tali variabili si utilizzano: l’algoritmo EM (Expectation-Maximisation) la procedura X12 ARIMA metodo di bilanciamento verticale del campione (New Eurocoin: Tracking economic growth in real time, Altissimo et all., 2007). Gli indicatori regionali di attività economica coincidenti sono stati ottenute come media aritmetica degli indicatori stimati con le tre differenti metodologie.

30 Gli indicatori Previsivi
Gli indicatori regionali di attività economica previsivi sono stimati calcolando la distribuzione delle previsioni condizionate, cioè le proiezioni di un insieme di variabili di interesse sulla base degli andamenti futuri di altre variabili, all’interno di sistemi dinamici. Il metodo di stima utilizzato consiste nell’applicazione di un VAR Bayesiano, ai dati dei 20 indicatori regionali di attività economica coincidenti. La procedura di previsione a tre mesi è stata effettuata utilizzando come variabile condizionata il Pil italiano “mensilizzato” proiettato in avanti di due trimestri rispetto al dato attualmente disponibile, sulla base di una prudente previsione in linea con quelle a supporto dei documenti pubblici (DEF) e con quelle della Commissione Europea (Winter Forecasts).

31 La provvisorietà dei dati
Indicatore di attività economica -Mezzogiorno Fonte: nostre elaborazioni su dati Isae, Istat, Unioncamere e Unrae

32 La provvisorietà dei dati
Indicatore di attività economica - Piemonte Indicatore di attività economica - Sicilia Fonte: nostre elaborazioni su dati Isae, Istat, Unioncamere e Unrae Fonte: nostre elaborazioni su dati Isae, Istat, Unioncamere e Unrae

33 Bibliografia Da studiare:
Benni F., Brasili A. (2007), Un indicatore sintetico di attività economica per le regioni italiane, Rivista di Economia e Statistica del Territorio, n.2 maggio-agosto 2006, Ed. Franco Angeli. Benni F. (2016), I nuovi indicatori regionali di attività economica coincidenti e previsivi, working paper.

34 Bibliografia Per approfondimenti:
Altissimo F., Cristadoro R., Forni M., Lippi M., Veronese G. (2007), New Eurocoin: Tracking economic growth in real time, Temi di discussione del Servizio Studi numero 631, Banca d’Italia; Bai J., Ng S. (2002), Determining the Number of Factors in Approximate Factor Models, Econometrica Vol. 70, No. 1, pp Bandura M., Giannone D., Lanza M. (2014), Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections, Working paper n.1733/ settembre 2014, European Central Bank Stock J.H., Watson M.W. (1998), Diffusion Indexes, NBER, Working Paper No Stock J.H., Watson M.W. (2002), Macroeconomic Forecasting Using Diffusion Indexes, Journal of Business and Economic Statistics Vol. 20, pp Sito RegiosS:


Scaricare ppt "Metodi statistici per l’analisi economica - a.a"

Presentazioni simili


Annunci Google