Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
1
MICE-2020 (INFN MIB, Na, PV, Rm3)
M. Bonesini INFN, Sezione di Milano Bicocca Milano Italy
2
M. Bonesini - commissione V Ferrara
Motivazioni Lo scopo di MICE e’: Progettare, costruire e far funzionare una sezione realistica di un muon cooling channel Misurare le sue prestazioni per diversi settings di emittanza e momento del fascio I risultati servono per ottimizzare la costruzione di una Neutrino Factory o un Muon Collider 30/09/2014 M. Bonesini - commissione V Ferrara
3
Muon ionization cooling
Stochastic cooling is too slow. A novel method for + and - is needed: ionization cooling principle reality (simplified) reduce pt and pl heating Build a section of cooling channel long enough to provide measurable cooling (10% ) and short enough to be affordable and flexible Wish to measure this change to 1% Requires measurement of emittance of beams into and out of cooling channel to 0.1% ! Cannot be done with conventional beam monitoring device Instead perform a single particle experiment: High precision measurement of each track (x,y,z,px,py,pz,t,E) Build up a virtual bunch offline Analyse effect of cooling channel on many different bunches Study cooling channels parameters over a range of initial beam momenta and emittances increase pl 30/09/2014 M. Bonesini - commissione V Ferrara
4
MICE setup: cooling + diagnostics
Cools and measures about 100 muons/s 30/09/2014 M. Bonesini - commissione V Ferrara
5
MICE cooling channel Minimize heating term:
High gradient reacceleration 10% reduction of muon emittance for 200 MeV muons requires ~20MV RF Challenge: integration of these elements in the most compact and economic way Minimize heating term: Absorber with large X0 SC solenoid focusing for small T 3 Liquid Hydrogen absorbers 8 cavities MHz RFs, 8MV/m 5T SC solenoids IEEE Roma
6
Muon Emittance measurement
G4MICE simulation of Muon traversing MICE Each spectrometer measures 6 parameters per particle x y t x’ = dx/dz = Px/Pz y’ = dy/dz = Py/Pz t’ =dt/dz =E/Pz Determines, for an ensemble (sample) of N particles, the moments: Averages <x> <y> etc… Second moments: variance(x) x2 = < x2 - <x>2 > etc… covariance(x) xy = < x.y - <x><y> > Covariance matrix M = Getting at e.g. x’t’ is essentially impossible with multiparticle bunch measurements Compare in with out Evaluate emittance with: 30/09/2014 M. Bonesini - commissione V Ferrara
7
Storia partecipazione INFN in MICE
Si e’ svolta prima in NTA (come NTA-MICE) e poi in Gr V come MICE ed e’ regolata da un MOU firmato fra INFN e STFC a fine 2012 Finanziamenti esterni: ~ 200KE dal RAL all’ INFN nel 2007, attualmente stiamo cercando finanziamenti EU (proposal ETN MATiN con capofila INFN, rimandato al secondo round di gennaio 2015) Attivita’: principalmente rivolta ai rivelatori che instrumentano il fascio di MICE (sistema TOF+KL) MICE-2020 punta a capitalizzare gli investimenti fatti dall’ INFN negli ultimi anni ed ottenere i risultati relativi di Fisica degli acceleratori (STEP IV-STEP V nel ) 30/09/2014 M. Bonesini - commissione V Ferrara
8
MICE installation status
Target Beamline PID detectors SSC + trackers AFC Completo per lo STEP IV 30/09/2014 M. Bonesini - commissione V Ferrara
9
Compression of MICE Schedule
STEP V semplificato 30/09/2014 M. Bonesini - commissione V Ferrara
10
M. Bonesini - commissione V Ferrara
MICE Beamline ISIS 800 MeV proton synchrotron at RAL Titanium target, grazing ISIS beam p captured by quad triplet and momentum selected by dipole Followed by 5T decay superconducting solenoid (5 m long): contain p and decay m Second dipole momentum select muons 30/09/2014 M. Bonesini - commissione V Ferrara
11
M. Bonesini - commissione V Ferrara
MICE Target Titanium target (UK) dipped into ISIS beam at end of 20 ms beam cycle at ~0.4 Hz This requires fine control of the position of the target as well as high acceleration (~80 g) Original target ran 190K dips into beam, but failed december (Tip melted) A simplified design is being constructed Understand target operation Beam loss Dip depth and timing How affect ISIS Number of particles in MICE beamline 30/09/2014 M. Bonesini - commissione V Ferrara
12
PID beam instrumentation
30/09/2014 M. Bonesini - commissione V Ferrara
13
Beamline Commissioning
The beamline has been operated over a range of momenta, producing positrons, pions and protons TOF0 and KL detectors have been used to record beam profiles Time of flight have been used to identify pions and protons Pubblicato su JINST 300 MeV/c pion beam profile in TOF0. Left : 2D beam profile 30/09/2014 M. Bonesini - commissione V Ferrara
14
Sviluppato un nuovo metodo per misurare l’ emittanza con solo I TOF
Pubblicato su Eur. J. Phys. C 30/09/2014 M. Bonesini - commissione V Ferrara
15
M. Bonesini - commissione V Ferrara
I trackers di MICE 30/09/2014 M. Bonesini - commissione V Ferrara
16
Una visione piu’dettagliata dei solenoidi
30/09/2014 M. Bonesini - commissione V Ferrara
17
LO STEP IV: prima fase di MICE 2020
Tutto l’hardware e’ installato nella MICE Hall Run finale: da Marzo 2015, dopo il cambio del moderatore di ISIS 30/09/2014 M. Bonesini - commissione V Ferrara
18
Lo STEP V semplificato : fase finale di MICE 2020
Il DOE ha chiesto una compressione della schedula di MICE, con fine entro il Cio’ ha portato a disegnare una fase V semplificata (dimostrazione del muon cooling con riaccelerazione) . La transizione dallo STEP IV allo STEP V richiede l’aggiunta di due moduli RF (gia’ disponibili a FNAL) ed un altro AFC (gia’ disponibile al RAL) Questa configurazione, rispetto a quella originale con RFCC dello US Study 2, corrisponde di piu’ agli ultimi studi IDS 30/09/2014 M. Bonesini - commissione V Ferrara
19
M. Bonesini - commissione V Ferrara
Stato Cavita’ RF 30/09/2014 M. Bonesini - commissione V Ferrara
20
M. Bonesini - commissione V Ferrara
RF power train 30/09/2014 M. Bonesini - commissione V Ferrara
21
M. Bonesini - commissione V Ferrara
Conclusioni MICE 2020 ha realisticamente la possibilita’ di concludere il programma di studio del muon cooling in un tempo limitato ( ) l’hardware in pratica non necessita di ulteriori completamenti da parte US e permette di capitalizzare sull’investimento (anche umano) INFN degli ultimi anni 30/09/2014 M. Bonesini - commissione V Ferrara
22
M. Bonesini - commissione V Ferrara
Backup slides 30/09/2014 M. Bonesini - commissione V Ferrara
23
M. Bonesini - commissione V Ferrara
Sensitivity of Nufact X 5 0.10 10 2.50 50 130 M. Mezzetto present limit from the CHOOZ experiment 0.75 MW JHF to super Kamiokande with an off-axis narrow-band beam, Superbeam: 4 MW CERN-SPL to a 400 kt water Fréjus (J-PARC phase II similar) Neutrino Factory with 40 kton large magnetic detector. 30/09/2014 M. Bonesini - commissione V Ferrara IEEE Roma
24
International Scoping Study baseline
Neutrino Factory International Scoping Study baseline Proton Drive (4 MW, 2 ns bunch) Target, Capture, Drift (π→μ) & Phase Rotation Hg Jet 200 MHz train Cooling 30 pmm ( ^ ) 150 pmm ( L ) Acceleration 103 MeV ® 25 GeV Decay rings (baseline is race-track design): 7500 km L 4000 km L ISS Accelerator WG report: RAL 30/09/2014 M. Bonesini - commissione V Ferrara 24 24
25
beams: conventional and nufact beams
Problem in conventional n beams: a lot of minority components (beam understanding) Following muon collider studies, accelerated muons are ALSO an intense source of “high energy” Crucial features: high intensity (x 100 conventional beams) known beam composition (50% 50% e) Possibility to have an intense e beam Essential detector capabilities: detect and determine their sign WANF (conventional n beam at SPS) Nufact beam 30/09/2014 M. Bonesini - commissione V Ferrara
26
IDS Study – Physics Reach
3s contours shown ISS Physics Group Report: arXiv: v2 Sin22q13 Hierarchy d CP SPL: 4MW, 1MT H2OC, 130 km BL T2HK: 4 MW, 1MT H2OC, 295 km BL WBB: 2MW, 1MT H2OC, 1300 km BL NF: 4MW, 100KT MIND, 4000 & 7500 BL BB350: g=350, 1MT H2OC, 730 km BL 30/09/2014 M. Bonesini - commissione V Ferrara 26
27
M. Bonesini - commissione V Ferrara
Neutrino Factory R&D High power (MW) proton driver Target and collection (HARP/MERIT) Maximize + and - production Sustain high power (MW driver) Optimize pion capture Muon cooling (MICE) Reduce +/- phase space to capture as many muons as possible in an accelerator Muon acceleration Has to be fast, because muons are short-lived ! (RLA, FFAG, …) 30/09/2014 M. Bonesini - commissione V Ferrara
28
STEP V nella configurazione prevista con RFCC
30/09/2014 M. Bonesini - commissione V Ferrara
29
MICE STEP V semplificato
30/09/2014 M. Bonesini - commissione V Ferrara
30
M. Bonesini - commissione V Ferrara
RF phasing with muons 30/09/2014 M. Bonesini - commissione V Ferrara
31
M. Bonesini - commissione V Ferrara
RF phasing with muons 30/09/2014 M. Bonesini - commissione V Ferrara
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.