Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
1
La funzione Path e le forme a cespuglio
Lezione n°16 Prof.ssa Rossella Petreschi Lezione del 5/12/2013 del Corso di Algoritmica 1
2
LA FUNZIONE PATH Inizialmente s,t e (s,t) sono identificati vecchi, tutti gli altri vertici e spigoli di G sono identificati nuovi. Si conoscono poi DFS(t)=1, DFS(s)=2. La funzione PATH(v) prende come valore un cammino da v ad un vertice vecchio. Si considerano 4 casi: 1. vi è un nuovo back edge (v,w) PATH = vw; marca (v,w) vecchio. 2. vi è un nuovo tree edge (v,w) PATH = vw0w1wk-1wk, con w = w0 e LOW(w)=wk ovvero ci si arrampica sull’albero finchè un back- edge non ci porta in un vertice u tale che DFN(u)=LOW(w); marca vecchio tutti i vertici e gli spigoli sul PATH. 3. vi è un nuovo back edge (w,v) PATH = vw0w1wk-1wk, con w = w0 e wk vecchio; ovvero il cammino va all’indietro fino al primo vecchio vertice; 4. Tutti gli spigoli incidenti in v sono vecchi PATH = Ø. 2
3
PROCEDURA DI ST-NUMERAZIONE
Procedura ST-NUMERAZIONE (G) Inizializzazione: si marcano s,t e (s,t) come vecchi e tutti gli altri vertici e spigoli come nuovi;si inseriscono t ed s nello stack S, nell’ordine, cont =1;pop v da S; while v ≠ t do if PATH =Ø then STN(v)=cont; cont=cont +1; else push tutti i vertici di PATH in ordine inverso a v(v deve rimanere al top) pop v da S STN(t)=cont 3
4
EMBEDDING Dato un disegno planare di un grafo G, si ordini la lista di adiacenza di G in modo che tutti i vicini di ogni vertice v seguano il verso dell’orologio sul disegno dato. L’insieme delle liste così ordinato è chiamato incastonamento (embedding) di G. 4
5
RAPPRESENTAZIONE A CESPUGLIO
Si consideri G(V,E) sui cui vertici è imposta una st-numerazione v1, …, vn e Gk (Vk,Ek) sottografo di G indotto dai vertici Vk= (v1, …,vk). Se k<n, deve esistere almeno uno spigolo con un estremo in Vke un estremo in V-Vk. Si costruisca Gk’ aggiungendo a Gktutti gli spigoli di questo tipo con la caratteristica che un vertice in V- Vk connesso a d vertici in Vk sarà rappresentato con d copie virtuali di grado 1. Una rappresentazione a cespuglio di Gk’ è un ebedding di Gk’ con tutti i vertici virtuali posizionati sulla faccia esterna(usualmente sulla stessa orizzontale). 5
6
ANCORA SUI CESPUGLI (Even 1979)
Sia (s,t) disegnato sul bordo della faccia esterna di un embedding di G. Si consideri Gk sottografo piano di G. Per 1≤ k ≤n vale: tutti i vertici e gli spigoli di G-Gk sono disegnati sulla faccia esterna del sottografo piano Gk di G; per una qualunque forma a cespuglio di Gk , esiste una sequenza di permutazioni e di scambi che porta tutte le copie del vertice “k+1” ad occupare posizioni consecutive sulla linea orizzontale 6
7
PQ-TREE Una forma a cespuglio Bk è normalmente rappresentata tramite una struttura dati chiamata PQ-tree. I nodi di un PQ-tree sono divisi in tre classi: P-nodi, Q-nodi e foglie, dove: i P-nodi rappresentano punti di articolazione di Gk e i figli di un P-nodo possono essere permutati arbitrariamente i Q-nodi rappresentano le componenti biconnesse di Gke i figli di un Q-nodo possono essere solo scambiati le foglie sono i nodi virtuali in Bk le foglie si muovono in accordo ai movimenti dei P-nodi (o dei Q-nodi) Booth e Lueker hanno provato che le permutazioni e gli scambi nominati sopra possono essere trovati applicando ripetutamente 9 trasformazioni base 7
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.