La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Erasmus+ CBHE project E-JP

Presentazioni simili


Presentazione sul tema: "Erasmus+ CBHE project E-JP"— Transcript della presentazione:

1 Erasmus+ CBHE project 561890-2015E-JP
MARUEEB Erasmus+ CBHE project E-JP Induction event and Coordination meeting Final presentation of the case-study Andranik Arakelyan and Yervand Shamamyan “Peter the Great” St. Petersburg Polytechnic University, 18nd September 2017 Questo modello può essere utilizzato come file iniziale per la presentazione di materiale didattico per la formazione in gruppo. Sezioni Fare clic con il pulsante destro del mouse su una diapositiva per aggiungere sezioni. Le sezioni possono essere utili per organizzare le diapositive o agevolare la collaborazione tra più autori. Note Utilizzare la sezione Note per indicazioni sull'esecuzione della presentazione oppure per fornire informazioni aggiuntive per il pubblico. Mostrare queste note nella visualizzazione Presentazione durante la presentazione. Valutare con attenzione le dimensioni dei caratteri, importanti per l'accessibilità, la visibilità, la registrazione video e la produzione online. Colori coordinati Prestare particolare attenzione ai grafici, ai diagrammi e alle caselle di testo. Tenere presente che i partecipanti eseguiranno la stampa in bianco e nero o in gradazioni di grigio. Eseguire una stampa di prova per assicurarsi che i colori risultino comunque efficaci e chiari in una stampa in solo bianco e nero e in gradazioni di grigio. Grafica, tabelle e grafici Scegliere la semplicità: se possibile utilizzare stili e colori coerenti, che non rappresentino elementi di distrazione. Assegnare un'etichetta a tutti i grafici e a tutte le tabelle.

2 Definition of wind turbine power depending on area parameters
Produced electricity, GWh/year Wind turbine power, GW 2001 38415 23.9 2002 52809 31.1 2003 64191 39.4 2004 84387 47.6 2005 103881 59.1 2006 133015 74.0 2007 170800 93.9 2008 221024 120.7 2009 277412 159.1 2010 341330 198.0 2011 435507 238.1 2012 523581 282.9 2013 645551 318.7 2014 717293 369.9 2015 822130 432.7 2016 924920 486.8

3 Total capacity of economically profitable wind power stations is estimated at 450 MW and 1.26 billion kWh of electricity. However, the total potential exceeds 4900 MW. The main promising areas in Armenia are Zod mountain pass, Bazum mountains, Karakhach and Pushkin mountain passes, Geghama mountain range, Sevan pass, Aparan region, Highland belt between Sisian and Goris and Meghri region. According to the Public Services Regulatory Commission of 2016, Decision 128 determines the wind power price of 7 euro cent/ kWh

4 Definition of wind turbine power depending on area parameters
It is foreseen to construct wind power plant consisting of wind turbines for the village in mountains. Technically available height for wind turbine` H=40 m. Atmospheric pressure is 680 mm Hg. The measuring station is located` H0= 10 m. Months I II III IV V VI VII VIII IX X XI XII Air temperature, 0C(10 m) -3.6 1 5.3 12.5 17.4 21.8 25.8 25.2 20.5 13.3 6.3 -0.2 Relative humidity, % 79 75 62 56 57 49 45 46 73 Wind speed, m/s Average speed, m/s I II III IV V VI VII VIII IX X XI XII Duration, hours 0-2 1 100 110 55 48 45 53 65 60 38 2-4 3 170 160 184 166 144 135 115 125 154 186 225 280 4-6 5 340 350 335 312 294 258 238 275 325 367 6-8 7 146 194 237 279 189 35 Sum 720 UNIGE – MARUEEB intensive course

5 Description of methodology
The definition of air temperature, atmospheric pressure and density of humid air (H=40 m). 𝑑𝑇 𝑑ℎ =− C/km 𝑇 𝑇 0 = 𝑝 𝑝 0 𝑅/ 𝑐 𝑝 𝜌= 𝜌 𝑑𝑟.𝑎𝑖𝑟. + 𝜌 𝑣 = 𝑝 𝑎 −𝜑∙ 𝑝 ′′ 𝑅 𝑑𝑟.𝑎𝑖𝑟 𝑡 𝜑∙ 𝑝 ′′ 𝑅 𝑑𝑟.𝑎𝑖𝑟 𝑡+273 Months I II III IV V VI VII VIII IX X XI XII Air temperature, 0C(40 m) -3.894 0.706 5.006 12.206 17.106 21.506 25.506 24.906 20.206 13.006 6.006 -0.494 Atmosphere pressure, mmHg 677.42 677.46 677.5 677.56 677.6 677.64 677.67 677.63 677.57 677.51 677.45 𝑝 ′′ , Pa 458 643 873 1422 1951 2567 3267 3152 2369 1499 936 590 𝜌, kg/m3 1.152 1.132 1.115 1.085 1.066 1.049 1.034 1.037 1.054 1.082 1.11 1.138 UNIGE – MARUEEB intensive course

6 Description of methodology
The definition of the average u velocity of air flow on the H=40 m 𝑢= 𝑢 0 ∙ 𝑙𝑛 𝐻 𝑍 𝑙𝑛 𝐻 0 𝑍 H0=10 m H=40 m Limits, m/s Average, m/s 0-2 1 1.73 2-4 3 5.19 4-6 5 8.65 6-8 7 12.12 The definition of the frequency and duration of air flow with the graphs. 𝑓 𝑗 = 𝜏 𝑗 𝜏 𝑗 100% 𝑑 𝑗 = 𝑗 𝑛 𝑓 𝑗 UNIGE – MARUEEB intensive course

7 Description of methodology
The definition of the air velocity feasibility and the average velocity in the month. 𝑃 𝑗 = 𝑓 𝑗 ∙ 𝑢 𝑗 𝑢 = 𝑗=1 𝑛 𝑓 𝑗 ∙ 𝑢 𝑗 The definition of energy potential of air current velocity and the appropriate value depending on frequency. 𝑁 0𝑗 = 1 2 ∙𝜌∙ 𝑢 𝑗 , 𝑊 𝑚 2 , 𝑁 0 = 𝑁 0𝑗 ∙ 𝑓 𝑗 , 𝑊 𝑚 2 . Jenuary 𝑢 𝑗 m/s 𝜏 𝑗 𝑓 𝑗 % 𝑑 𝑗 % 𝑃 𝑗 m/s 𝑁 0𝑗 W/m2 𝑁 0𝑗 ∙ 𝑓 𝑗 W/m2 1.731 100 13.888 0.24 2.99 0.42 5.192 170 23.611 86.11 1.23 80.65 19.04 8.654 340 47.222 62.5 4.09 373.37 176.32 12.115 110 15.277 15.27 1.85 156.53 720 - 7.4 352.31 ……….. June 𝑢 𝑗 m/s 𝜏 𝑗 𝑓 𝑗 % 𝑑 𝑗 % 𝑃 𝑗 m/s 𝑁 0𝑗 W/m2 𝑁 0𝑗 ∙ 𝑓 𝑗 W/m2 1.731 48 6.667 100 0.115 2.720 0.181 5.192 135 18.750 93.333 0.974 73.437 13.769 8.654 258 35.833 74.583 3.101 12.115 279 38.750 4.695 720 8.884 UNIGE – MARUEEB intensive course

8 Description of methodology
……. December Air flow average velocity variation during the year. 𝑢 𝑗 m/s 𝜏 𝑗 𝑓 𝑗 % 𝑑 𝑗 % 𝑃 𝑗 m/s 𝑁 0𝑗 W/m2 𝑁 0𝑗 ∙ 𝑓 𝑗 W/m2 1.731 38 5.278 100 0.091 2.949 0.156 5.192 280 38.889 94.722 2.019 79.611 30.960 8.654 367 50.972 55.833 4.411 12.115 35 4.861 0.589 49.163 720 7.110 UNIGE – MARUEEB intensive course

9 The received digital values ​​are theoretical potential that has the wind throughout the year. However, placing the windpipe at this site brings a number of technical issues that do not allow the full potential to be used. In particular, wind turbine blades start rotating at a certain speed, overcoming the inertia of the engine. The speed varies from 3 to 4 m / s. Each wind turbine has a nominal capacity corresponding to nominal velocity ranging from 8 to 9 m / s. In the case of higher speeds, profitability falls, and the forces that influence the shovel may exceed the design values, and therefore maintain nominal speeds at higher speeds.

10 Description of methodology
The definition of quantity of energy potential for each month and annual potential. 𝐸 0 = 1 𝑛 𝑁 𝑗 𝜏 𝑗 , 𝑊∙ℎ 𝑚 I month 𝐸 0 = 1 𝑛 𝑁 𝑗 𝜏 𝑗 , 𝑊∙ℎ 𝑚 II month 𝐸 0 = 𝐸 0 𝐼 + 𝐸 0 𝐼𝐼 + 𝐸 0 𝐼𝐼𝐼 +….. 𝐸 0 𝑋𝐼𝐼 , 𝑊∙ℎ 𝑚 2 …………….. 𝐸 0 = 1 𝑛 𝑁 𝑗 𝜏 𝑗 , 𝑊∙ℎ 𝑚 XII month W= 𝐸 0 ∙ 𝜂 𝐵 ∙ 𝜂 𝑚𝑒𝑐ℎ 𝜂 𝐵 =0.593, 𝜂 𝑚𝑒𝑐ℎ. ≈0.7− W=1787∙0.593∙0.75=795 𝑘𝑊ℎ/ 𝑚 2 In the technical literature given data allow us to know that on the height of 40 m it is optimal to implement the wind turbine which has L=50-55 m rotating diameter. So we can calculate produced electrical energy during the year. W(turbine)=𝑊∙ 𝜋∙ 𝐿 W(turbine)=795∙ 3.14∙ =1.6∙ 𝑘𝑊ℎ 𝑁 0𝑛𝑜𝑟 =0.593∙0.75∙ 1 2 ∙𝜌∙ 𝑢 𝑛𝑜𝑟 ∙𝐴, 𝑊 𝑁 0𝑛𝑜𝑟 =0.593∙0.75∙ 1 2 ∙1.2∙ 8 3 ∙1962.5=268131, 𝑊 =268 𝑘𝑊 1.731 5.192 8.654 12.115 8 January , h 100 170 340 110 , kg/m3 1.152 N, W/m2 E,kWh/m2 UNIGE – MARUEEB intensive course

11 1.731 5.192 8.654 12.115 8 February , h 110 160 350 100 , kg/m3 1.132 N, W/m2 E,kWh/m2 1.731 5.192 8.654 12.115 8 June , h 48 135 258 279 , kg/m3 1.049 N, W/m2 E,kWh/m2 1.731 5.192 8.654 12.115 8 December , h 38 280 367 35 , kg/m3 1.137 N, W/m2 E,kWh/m2

12 Financial Analysis The aim of financial analysis of the case study is the calculation of Capital Investments (CI) for the construction of wind turbine plant, Discounted Payback Period (DPP), the Internal Rate of Return (IRR) and the Net Present Value (NPV). 𝑃𝑃= 𝐶𝐼 𝐶𝐹 Net Present Value (NPV) also converts future CF-s into their present value and compares those with the II: 𝑁𝑃𝑉= 𝐶𝐹 0 + 𝐶𝐹 1 1+𝑖 1 + 𝐶𝐹 2 1+𝑖 2 +…+ 𝐶𝐹 𝑛 1+𝑖 𝑛 Net present value [€] Payback period [years] 6.5 Internal rate of return 18% UNIGE – MARUEEB intensive course

13 Thank you very much for your attention!
Questions and answers Вопросы и ответы Հարցեր եւ պատասխաններ Domande e risposte For additional info: UNIGE – MARUEEB intensive course


Scaricare ppt "Erasmus+ CBHE project E-JP"

Presentazioni simili


Annunci Google