Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
1
Gli elettroni nell’atomo
CAPITOLO Gli elettroni nell’atomo 11 Indice La luce come onda Natura corpuscolare della luce I limiti del modello atomico di Rutherford Gli spettri di emissione a righe degli atomi Il modello di Bohr dell’atomo d’idrogeno Energia di ionizzazione Energie di ionizzazione superiori alla 1a Il modello atomico a strati 1
2
La luce è un tipo di radiazione elettromagnetica.
1 La luce come onda La luce, secondo la teoria classica, è un movimento ondulatorio di un campo elettrico e di un campo magnetico che si propagano nello spazio. La luce è un tipo di radiazione elettromagnetica. 2
3
1 La luce come onda c = da cui c = c = 3
I parametri che caratterizzano un’onda elettromagnetica sono: La lunghezza d’onda () si misura in nm. La frequenza () si misura in secondi1 o in hertz (hz). L’ampiezza (A). La velocità (c) nel vuoto è pari a 3,0 108 m/s. c = da cui c = c = Pertanto e sono grandezze inversamente proporzionali. 3
4
1 La luce come onda I colori che costituiscono i componenti della luce visibile sono evidenziati con il fenomeno noto come “dispersione della luce”. Dispersione della luce bianca: si ha formazione di uno spettro continuo. 4
5
1 La luce come onda La luce visibile rappresenta solo una piccola porzione dello spettro elettromagnetico. Lunghezza d’onda e frequenza dello spettro elettromagnetico. Il visibile costituisce una piccola parte compresa tra 400 nm e 750 nm. 5
6
Natura corpuscolare della luce
2 Natura corpuscolare della luce EFFETTO FOTOELETTRICO. Un metallo colpito da un raggio di luce di una certa frequenza emette elettroni. Quando una luce con una frequenza superiore ad un valore, detto soglia fotoelettrica, colpisce la superficie di un metallo, si ha emissione di elettroni. Il fenomeno è chiamato effetto fotoelettrico. 6
7
Natura corpuscolare della luce
2 Natura corpuscolare della luce La ragione dell’effetto fotoelettrico non è spiegata dalla teoria ondulatoria della luce. Einstein, nel 1905, applicò l’idea della quantizzazione dell’energia per spiegare questo fenomeno. Egli suggerì che la luce è costituita da “pacchetti” di energia, che chiamò fotoni. L’energia di un fotone è E = h dove E = energia in J; h = costante di Planck = 6,626 10−34 J s; = frequenza espressa in s−1 (Hz) Secondo Einstein la luce viaggia nello spazio in granuli di energia e non su fronte d’onda, per cui presenta natura discontinua. Ai fotoni si assegna “natura corpuscolare” proprio per il fatto che si presentano discontinui. 7
8
I limiti del modello atomico di Rutherford
3 I limiti del modello atomico di Rutherford Modello atomico di Rutherford. Secondo le leggi della fisica classica, un corpo carico di elettricità, come l’elettrone, che si muove di moto circolare attorno al nucleo, dovrebbe perdere energia ed emettere radiazioni di tutte le possibili lunghezze d’onda e cadere nel nucleo. Ciò è in contrasto con i dati sperimentali. 8
9
Gli spettri di emissione a righe degli atomi
4 Gli spettri di emissione a righe degli atomi Gli atomi d’idrogeno emettono uno spettro caratteristico a righe nella zona del visibile. Gli atomi delle sostanze gassose emettono radiazioni di lunghezza d’onda definita e costante. Spettro a righe di emissione dell’atomo di idrogeno su una lastra fotografica delle righe di Balmer, le sole visibili a occhio nudo. 800 700 600 550 400 9
10
Il modello di Bohr dell’atomo d’idrogeno
5 Il modello di Bohr dell’atomo d’idrogeno Le linee nere rappresentano i salti elettronici che si possono verificare in un insieme di atomi d’idrogeno in seguito ad assorbimento di energia. Le linee colorate rappresentano le radiazioni luminose che un insieme di atomi d’idrogeno può emettere nel visibile (righe di Balmer). Bohr, nel 1913, postulò che: nell’atomo d’idrogeno l’elettrone si muove attorno al nucleo in orbite circolari di determinata energia (energia quantizzata); finché l’elettrone si muove in un’orbita permessa non emette energia; quando un elettrone assorbe energia passa da un’orbita ad un’altra ad energia maggiore; segue 10
11
Il modello di Bohr dell’atomo d’idrogeno
5 Il modello di Bohr dell’atomo d’idrogeno l’elettrone può passare da un’orbita ad un’altra ad energia minore emettendo un fotone di definita energia; l’energia di un fotone, emesso o assorbito, corrisponde alla differenza di energia tra due orbite. 11
12
Energia di ionizzazione
6 Energia di ionizzazione L’energia per strappare da un atomo il primo elettrone è detta energia di 1a ionizzazione. Nel SI l’energia di ionizzazione si indica con EI ed è misurata in kJ/mol. ENERGIA DI IONIZZAZIONE. L’energia di 1a ionizzazione è l’energia necessaria per rimuovere un elettrone da un atomo allo stato gassoso. In figura è mostrato il processo di ionizzazione del litio che presenta tre protoni e tre elettroni. 12
13
Energie di ionizzazione superiori alla 1a
7 Energie di ionizzazione superiori alla 1a È possibile allontanare più di un elettrone da un atomo, ma ciò richiede una grande quantità di energia, maggiore rispetto a quella che serve per allontanare il primo elettrone. Nel caso del litio si hanno i seguenti valori: EI EI EI kJ/mol Li Li+ Li2+ 13
14
Il modello atomico a strati
8 Il modello atomico a strati EI Numero di ionizzazione 496 4562 6912 9540 13300 16606 20110 25493 28933 141135 159069 √ EI 22,3 67,5 83,1 97,7 115 129 142 160 170 376 399 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a Energie di ionizzazione dell’atomo di sodio Le energie di ionizzazione ci permettono di rappresentare un primo modello atomico, detto a gusci elettronici o strati, dove gli elettroni sono raggruppati in livelli di energia. 14
15
Il modello atomico a strati
8 Il modello atomico a strati Disposizione degli elettroni nell’atomo di sodio secondo Bohr. Grafico della radice quadrata di ciascuna delle 11 energie di ionizzazione del sodio in funzione del numero di elettroni rimossi. n=3 n=2 n=1 Nell’atomo di sodio gli elettroni sono così distribuiti: 2 elettroni formano il primo livello, quello più vicino al nucleo, n = 1. 8 elettroni sono nel livello intermedio, n = 2. 1 elettrone, con la più bassa energia di ionizzazione, e pertanto più facile da allontanare, si trova nel terzo livello, n = 3. 15
16
Il modello atomico a strati
8 Il modello atomico a strati Disposizione degli elettroni secondo Bohr per gli atomi degli elementi aventi numero atomico tra 1 e 18. I livelli di energia, a loro volta, sono suddivisi in sottolivelli. 16
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.