La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

ICARA Colle Leone (TE), ottobre 2012

Presentazioni simili


Presentazione sul tema: "ICARA Colle Leone (TE), ottobre 2012"— Transcript della presentazione:

1 ICARA 2012 - Colle Leone (TE), 27-28 ottobre 2012
Radiometeore, oggi Giovanni Aglialoro, IV3GCP Massimo Devetti, IV3NDC Radioastronomia per Radioamatori

2 Osservazioni del Flusso Meteorico con tecniche radio
Un Meteoroide, a causa del campo gravitazionale terrestre, entra nella nostra atmosfera a velocità di decine di km/s. Appena esso incontra strati gassosi sufficientemente densi, si riscalda per attrito, evaporando in superficie ( processo di ablazione ). Gli atomi così liberatosi collidono con gli atomi di gas circostante. L’elevata energia (in particolare cinetica) associata al Meteoroide si trasforma quindi in: Radiazione nello spettro visibile Aumento di temperatura - Ionizzazione delle particelle circostanti Radioastronomia per Radioamatori

3 Quali sono le tecniche osservative applicabili al flusso meteorico?
Il flusso meteorico “normale” (Meteore Sporadiche) presenta variazioni giornaliere e stagionali. Oltre a ciò, in certi periodi dell’anno l’orbita terrestre interseca “Streams” ad alta densità di Meteoroidi (Sciami di Meteore). Quali sono le tecniche osservative applicabili al flusso meteorico? Visuale Fotografica Telescopica Video Radio Radioastronomia per Radioamatori

4 Le osservazioni delle Meteore con tecniche radio si basano sul principio del Meteor Scatter
Il passaggio di un meteoroide in atmosfera lascia una scia di gas ionizzato che diffonde o riflette (per un certo intervallo di tempo, proporzionale al quadrato della lunghezza d’onda incidente) le onde radio ad essa incidenti, su frequenze ove normalmente non è possibile la ricezione oltre l’orizzonte radio. Sintonizzandosi su una frequenza ove irradia un trasmettitore noto (il cui segnale normalmente non è ricevibile), il passaggio di una meteora è segnalato da un eco del segnale proveniente dal trasmettitore considerato. Radioastronomia per Radioamatori

5 Imprecisione dell’osservatore umano
L’osservazione con tecniche radio permette di svincolarsi da una serie di limitazioni, proprie delle precedenti metodologie: Imprecisione dell’osservatore umano Impossibilità di osservazioni diurne Dipendenza dalle condizioni climatiche Inquinamento luminoso Dinamica strumentale (osservazione delle sole meteore visibili) Le osservazioni radio, pur soffrendo di una serie di altre limitazioni, costituiscono tuttavia uno dei metodi più efficaci per lo studio delle meteore, e sono adatte in particolare a sessioni osservative su lungo periodo. Radioastronomia per Radioamatori

6 Meteor Back Scatter Observations (Radar Meteorici Attivi)
Meteora Antenna Radar Radioastronomia per Radioamatori

7 Forward Meteor Scatter Observations
Meteora D Trasmettitore Ricevitore A differenza della tecnica precedente, tipica dell’ambito accademico e professionale, la tecnica osservativa basata sul Forward Meteor Scatter è alla portata dei ricercatori amatoriali, qualora si utilizzi un trasmettitore preesistente. Questo tuttavia deve essere scelto sulla base di opportune specifiche. Radioastronomia per Radioamatori

8 Caratteristiche del Trasmettitore Ideale per F.M.S.O.
Sufficientemente distante da non essere normalmente ricevibile via Tropo ( typ. D>600 Km ) Non troppo distante da non consentire lo Scattering meteorico, per motivi geometrici ( D<2200 Km ) Frequenza di trasmissione nota e non interferita da altre emittenti Operante in continuità senza interruzioni di servizio Segnale trasmesso di caratteristiche invarianti nel tempo ( es: portante non modulata ) Frequenza operativa che non permette forme propagative tali da consentire la ricezione (ad eccezione del M.S.): Gamma VHF Potenza di trasmissione sufficientemente elevata, Radiation Pattern dell’antenna non sfavorevole Radioastronomia per Radioamatori

9 Frequenza operativa scelta: 55,052 MHz (Portante Video DR1, Fyn, Denmark)
Fino all'anno 2010 Audio (MHz) Cityva Station Audio ERP Coordinates HAAT (m) 221 Country Video (MHz) Audio (MHz) City Station Video  ERP (W) Audio ERP (W) Coordinates HAAT (m) Denmark Fyn DR 1 25,000 1,250 10-29E / 55-17N 221 Questo trasmettitore TV presentava caratteristiche ottimali in termini di: - distanza dalla stazione ricevente ( ~ 1100 Km ) - potenza di uscita (25 KW ERP, Pattern omnidirezionale) operatività ( h24 tutto l’anno ) - immunità alle interferenze (non vi sono altri trasmettitori su freq. vicine) Radioastronomia per Radioamatori

10 Osservatorio Radio-meteorico del Liceo Scientifico di Gorizia: configurazione fino al 2010
ANT. 4 el. Yagi Reduction & Analisys Acquisition ANT. Preamp. f = MHz A / D BOARD ATT AUDIO AGC RX CONVERTER VHF RECEIVER IF = MHz LO 94 MHz Data & Plots Radioastronomia per Radioamatori

11 Caratteristiche tecniche del sistema
Antenna: Yagi 4 elementi f0 = 55 MHz, G = 6,5 dBd; HPBW (a -3dB) =65°; LNA: MosFet BF981, G = 16 dB, NF = 1 dB; Radioastronomia per Radioamatori

12 Caratteristiche tecniche del sistema
Linea di discesa coassiale: 15 m di RG213 Step Attenuator: 50 Ω, 0, dB; Up converter: 2x BF981 + mixer SBL1, G = 20 dB, NF = 1,5 dB Oscillatore Locale 94 MHz, uscita 40 mW (+16 dBm); Radioastronomia per Radioamatori

13 Caratteristiche tecniche del sistema
Ricevitore IF: Yaesu FRG 9600 (uscita audio, uscita AGC); Scheda A/D: 8 bit Flytec FPC010 Computer: PC Pentium 133 MHz con Windows 98 ! Software: Automatic Meteor Counting System  Radioastronomia per Radioamatori

14 Software di acquisizione
Rileva gli “echi” causati dall’ingresso di un meteoroide in atmosfera e li associa ad eventi, che vengono registrati su file di testo. Il sampling combinato dei segnali AGC (Open Loop) e Audio permette di determinare se un’aumento di potenza ricevuta è dovuto a segnale utile (eco meteorico) o a rumore. L’analisi del segnale audio permette anche, entro certi limiti, un filtering nei conteggi (echi dovuti ad altri trasmettitori, sufficientemente lontani in frequenza, non vengono conteggiati). Radioastronomia per Radioamatori

15 Autocorrelation Algorithm
Software di acquisizione 10 Hz Sampling AUDIO AGC (Open Loop) Autocorrelation Algorithm PWR YES PWR > PwrThr ? K > KThr ? PwrThr = NoiseFloor + ΔPwr NO Automatic Meteor Counting System by IV3NDC -- Legenda – -Il sw esegue un campionamento del segnale AGC (ad anello aperto) ogni 0.1s. -Normalmente (in assenza di segnale) il livello di tensione dell'AGC è posizionato su NoiseFloor -DPwr rappresenta l'incremento di livello AGC oltre il quale si considera presente un "segnale" (utile o rumore) -PwrThr=NoiseFloor + DPwr se questa soglia viene superata si considera presente un "segnale" (utile o rumore) -Se PwrThr è superata, allora si va a fare un'analisi anche sull'audio, altrimenti no (per risparmiare operazioni di calcolo); in tal caso dopo altri 0.1s si ripete il sampling sull'AGC e così via. -Nel caso che PwrThr sia superata, da una serie di campioni audio si ricava il coefficiente di autocorrelazione K; questi assume un valore elevato se lo spettro del segnale è "concentrato" in una certa finestra. -Spettro concentrato significa, nel nostro caso, presenza di un tono di portante video (purchè sia dentro una certa finestra spettrale, per dare una certa tolleranza). Quindi, siamo in presenza di un eco meteorico. -Se invece K assume un valore "basso" siamo in presenza di uno spettro "distribuito" su una banda più larga: caso tipico del Noise: non siamo in presenza di eco meteorico bensì di rumore. -Quindi se il K calcolato sulla base di una serie di campioni audio è maggiore di un KThr prefissato, siamo in presenza di un eco meteorico e si procede al conteggio; altrimenti siamo in presenza di noise e il conteggio non viene effettuato. -Bassi valori di DPwr e/o KThr aumentano la sensibilità del sistema, ma anche la possibilità di errori. Può andare bene per il monitoraggio di meteore sporadiche o al limite sciami minori. -Alti valori di DPwr e/o KThr desensibilizzano il sistema ricevente, ma riducono la possibilità di errori. Configurazione buona per periodi di elevata attività meteorica o sciami maggiori. NO YES No Meteor Detection Meteor Detection To counter No Signal / No Meteor Detection Radioastronomia per Radioamatori

16 Software di acquisizione
Il coefficiente di Autocorrelazione K assumerà valore elevato solo se la potenza del segnale audio è concentrata, in termini di spettro, attorno alla frequenza del “Tono Audio” che ci aspettiamo di ricevere dal trasmettitore lontano. I Parametri NoiseFloor , ΔPwr e KThr sono impostabili all’inizio della sessione di osservazione. Il loro valore definisce la “Sensibilità” (Magnitudine Limite) del sistema di rilevazione e conteggio di eventi meteorici. In base alla tipologia di osservazione da effettuare (Meteore Sporadiche, Sciami Minori, Sciami Maggiori o Meteor Storms) i parametri sopraccitati (come l’attenuazione sulla catena di ricezione) vanno scelti nell’ ottica del miglior compromesso tra Sensibilità ed Immunità ai disturbi. Radioastronomia per Radioamatori

17 Procedura di osservazione
Accensione del sistema ed eventuale setup L’acquisizione è automatica; ogni 24 ore vengono generati 2 file (formato testo) contenenti i dati acquisiti secondo diverse modalità; i file vengono aggiornati ogni 20 minuti Trasferimento dei file al PC dedicato all’analisi; elaborazione con appositi tool (es.: fogli Excel) …una breve clip del sistema in azione Radioastronomia per Radioamatori

18 Esempio di file generati
(riporta i conteggi del numero di echi ad intervalli regolari di 20 min) Quiet Signal dB Trigger Size dB Audio Threshold Max Ping Duration * 0.1 sec Transmitter ID DR1 Frequency MHz RX Antenna elYagi Antenna Beamwidth 65Degs Beam Azimuth Degs Beam Elevation Degs Minimum RX NF dB Attenuation dB <- MID TIME UT -> < COUNT > DA MO YR HR MN SC FALSES PINGS METEOR ======== ======== ====== ====== ====== tot long dd mm yy hh mm ss dur met met met met met met met (raggruppa gli echi in classi di durate, su base oraria) Esempio di elaborazione dati Radioastronomia per Radioamatori

19 Andamento giornaliero del flusso meteoritico
Source: METEOR SCIENCE AND ENGINEERING, D.W.R. McKinley 1961 Tale flusso ha variazioni stagionali e giornaliere, legate principalmente all’altezza del punto di Apice celeste rispetto all’orizzonte: tale punto corrisponde alla regione di atmosfera avente la massima probabilità di intercettare meteore. L’andamento del flusso è in prima approssimazione sinusoidale, con massimo nelle prime ore nel mattino e minimo in prima serata. Più intuitivamente, basta notare che proprio nelle ore mattutine l’osservatore si trova sulla zona della Terra orientata nel verso di avanzamento del moto orbitale terrestre; tale posizione consente di intercettare un maggior numero di meteore, con la massima velocità relativa tra Terra e meteoroidi. Radioastronomia per Radioamatori

20 Verifica del flusso meteorico giornaliero
Radioastronomia per Radioamatori

21 Osservazioni su base continuativa
Il generico conteggio rileva il flusso giornaliero di meteore sporadiche, con sovrapposti eventuali sciami Radioastronomia per Radioamatori

22 Predicted Peak: Sept. 1, 11.33 UT ± 20 min. (Jenniskens/Lyytinen)
Osservazione di un Outburst: a-Aurigidi 2007 Predicted Peak: Sept. 1, UT ± 20 min. (Jenniskens/Lyytinen) Radioastronomia per Radioamatori

23 Osservazione di un Outburst: a-Aurigidi 2007
Radioastronomia per Radioamatori

24 Osservazione di sciami: Funzione di Osservabilità
La rilevazione, e la successiva “estrazione” di un determinato sciame dal flusso giornaliero si effettua una volta nota la Funzione di Osservabilità, relativa allo sciame considerato (oltre che funzione del tempo e della geometria di tratta). Tale funzione dipende principalmente dall’altezza del Radiante dello sciame rispetto l’orizzonte, e dalla direzione reciproca (in Azimut) tra stazione TX, RX e Radiante, in funzione del tempo. In prima approssimazione, il massimo di “Efficienza Radio” si ha per un altezza del radiante sull'orizzonte pari a 45°, e quando la direzione del Radiante è ortogonale alla direzione di tratta radio. Radioastronomia per Radioamatori

25 Osservazioni di sciami: Liridi 2009
[M. Sandri, M. Devetti, G. Aglialoro – 2009] Radioastronomia per Radioamatori

26 Calcolo del Profilo Radio
Sottrazione Del Background (Meteore Sporadiche) Correzione per altezza del Radiante Correzione per direzione (Azimuth) del Radiante Radioastronomia per Radioamatori

27 Profilo di Attività Finale
Radioastronomia per Radioamatori

28 Confronto con osservazioni visuali
nel “radio” (by Cosmic Noise team) Ottimo accordo tra osservazioni visuali e radio LYR Maximum according to IMO: Apr. 22, 09 UT (Λsol = 32° 245) visuale (dati IMO) Radioastronomia per Radioamatori

29 La postazione di rilevamento… Amateur Radio Station IV3RZM
Liceo Scientifico Duca degli Abruzzi piazza Divisione Julia GORIZIA QTH: 45° 56’ 17’’ N ° 37’ 04’’ E World Wide Locator: JN65TW Region CQ zone: ITU zone: 28 Radioastronomia per Radioamatori

30 Alcuni allievi presentano l’attività a ICARA 2007, Brasimone (BO)
Il Progetto Radiometeore al Liceo Scientifico Duca degli Abruzzi di Gorizia Rilevare la presenza di meteore e le variazioni dell’attività meteoritica con l’uso di tecniche radio, a fini didattici e scientifici. Alcuni allievi presentano l’attività a ICARA 2007, Brasimone (BO) IV3EZM, Gabriele IV3NDC, Max Radioastronomia per Radioamatori

31 Sviluppi futuri Caratterizzazione completa del sistema ricevente: stima della Magnitudine Limite in diverse condizioni, determinazione del valore ottimale di attenuazione per il miglior compromesso sensibilità/accuratezza, ecc… Applicazione di algoritmi per la riduzione / correzione dei dati rilevati (Dead Time, Sporadics subtr., Observability function…)  software per la stima del profilo di attività dello sciame secondo i parametri del nuovo impianto Totale automatizzazione delle procedure di acquisizione e plotting, remotizzazione, conteggi disponibili in real-time via web… Cambio di frequenza operativa: MHz (Radar di Graves, French Space Surveillance System) dato che … Radioastronomia per Radioamatori

32 Sviluppi futuri 49.749.823 - 849 KN68 Kryvyi Rih, Ukraine
Con lo Switch-Off della TV analogica, in buona parte d’Europa, si sono chiusi quasi tutti i trasmettitori TV nelle basse VHF (banda I, MHz), il settore dello spettro più adatto alla ricezione di echi radio meteorici. In alcuni paesi dell’Europa orientale la TV analogica è ancora in uso su queste bande, ma i trasmettitori purtroppo non sono attivi durante la notte. es.: KN68 Kryvyi Rih, Ukraine KO33 Minsk, Belarus

33 Il Radar bistatico di Graves (143.050 MHz)
E’ pertanto necessario orientarsi verso l’osservazione di altri sistemi trasmittenti: tra questi, il più adatto per i nostri scopi sembra essere il radar di Graves (French Space Surveillance System), un radar ad onda continua per l’osservazione di satelliti nell’orbita terrestre. Location: Broye-lès-Pesmes (Dijon) °N °E WWLocator: JN27SI Radioastronomia per Radioamatori

34 Il Radar di Graves (143.050 MHz)

35 Il Radar di Graves (143.050 MHz)
TX sequence = 1,6 s Radioastronomia per Radioamatori

36 Il Radar di Graves: criticità
Diagramma di Irradiazione tempo-variante (Phased Array): anche la funzione di osservabilità dipende dal tempo (notevole complicazione in fase di riduzione e correzione dei dati) Alcuni echi meteorici rischiano di essere “troncati” a causa del beam steering: sottostima della durata dell’eco Impossibilità, in tante aree del nostro Paese, di applicare la tecnica osservativa del Forward Scatter a causa della distanza e della direzione di puntamento (in azimuth) del radar: uso dei modelli di Back Scatter e Side Scatter

37 testi di riferimento, web-links, ringraziamenti …
D.W.R. McKinley, “Meteor Science and Engineering”, 1961 International Meteor Organization: Frequenze TV europee: Make More Miles on VHF: Radar Graves: Liceo Sc. Duca degli Abruzzi di Gorizia: IV3GCP, Jan, IV3NDC, Max, Un ringraziamento … a Gabriele Brajnik (IV3EZM), Marco Aglialoro, Chiara Corriga, Chiara Pizzol, Simone Kodermaz; alle classi 5D, 5C (dal 2005).

38 Come ricevere gli echi meteorici: strumenti e tecniche ovvero… Radioricevitori Antenne Accessori Frequenze Giovanni Aglialoro, IV3GCP Radioastronomia per Radioamatori

39 Radioricevitori Oggi anche con ricevitori (scanner) di dimensioni contenute si può ricevere quasi tutto lo spettro radio! Sono disponibili anche ricevitori SDR (Software Defined Radio) in cui molte funzioni che prima venivano svolte dai circuiti interni della radio ora sono affidate al pc ad essa connesso. GNURadio è un progetto HW/SW che fornisce una vasta libreria di strumenti con i quali è possibile costruire SDR con la programmazione in linguaggio Python.

40 Antenne filari Dipolo (R=75 Ω) L (m) = 142,6 / f (MHz)
Inverted V (120° R=50 Ω) L (m) = 141,9 / f (MHz)

41 Antenne direttive Le più diffuse sono le classiche Yagi; il guadagno, il lobo di radiazione, il rapporto avanti/retro, ecc. dipendono fondamentalmente dal numero di elementi.

42 Cavi coassiali, connettori
Dato che la maggior parte di antenne hanno impedenze vicine ai 50 Ω i cavi coax maggiormente usati sono: RG RG8 - RG58 Connettori: N PL BNC

43 Quali frequenze? R1 49.749.823 - 849 KN68 INTER Kryvyi Rih, Ukraine
Channel Frequency (MHz) Locator ID Location R KN68 INTER Kryvyi Rih, Ukraine R KP50 1TV St Petersburg, Russia R KO33 BT Minsk, Belarus slight warbler (polarizz. orizz.) Graves Radar: MHz polarizz. verticale

44 testi di riferimento, web-links,…
Nerio Neri “Antenne - linee e propagazione”, C&C Nerio Neri “Antenne - progettazione e costruzione”, C&C Graves Radar Frequenze TV europee: Progetto OpenSource GNU Radio: Ettus Research (HW/SW per SDR): Spectrum Lab (analizzatore di spettro): SpectranV2 (analizz. di spettro) e non solo …: MakeMoreMiles in VHF: Giovanni Aglialoro, IV3GCP,


Scaricare ppt "ICARA Colle Leone (TE), ottobre 2012"

Presentazioni simili


Annunci Google