La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Riassunto della puntata precedente:

Presentazioni simili


Presentazione sul tema: "Riassunto della puntata precedente:"— Transcript della presentazione:

1 Riassunto della puntata precedente:
Definizione di roccia e di minerale Processo magmatico, metamorfico e sedimentario I magmi: definizione e caratteristiche Volatili nei magmi (viscosità) Pressione anidra ed idrata Sottoraffreddamento dei magmi

2 Rocce Ignee Oggi parleremo dei processi che portano alla formazione delle rocce ignee e come le loro composizioni e microstrutture ci possono dire da dove provengano, perchè si sono formate e come si sono raffreddate.

3 Classificazione delle Rocce Ignee
Per classificare (dare un nome ad) una roccia (qualsiasi) è fondamentale conoscere la: Microstruttura (grandezza e forma dei cristalli e relazioni geometriche tra i vari minerali); Composizione (sia mineralogica che chimica).

4 Alla fine di un processo di raffreddamento i magmi possono:
VETRIFICARE Trasformarsi in vetri = masse solide amorfe senza fasi cristalline CRISTALLIZZARE Formare cristalli = sostanze che hanno un preciso ordinamento strutturale ed un identico chimismo in ogni loro porzione CRISTALLIZZARE e VETRIFICARE Solidificare formando sia cristalli che vetro.

5 Velocità di raffreddamento e grandezza dei cristalli
Un raffreddamento molto rapido (es. da pochi secondi a qualche minuto) potrebbe portare alla formazione di una massa vetrosa (assenza di cristalli). Un raffreddamento molto lento (es anni) porta alla formazione di pochi grandi cristalli. Un raffreddamento medio (es. poche ore-giorni) porta alla formazione di numerosi cristalli più piccoli. A volte il raffreddamento avviene “a due stadi” (ossia lento nella prima parte e rapido nella seconda).

6 Velocità di raffreddamento e grandezza dei cristalli
A seconda della presenza o meno di vetro e dei cristalli le rocce ignee possono essere divise in due (o tre) grandi categorie. Rocce PLUTONICHE: raffreddamento molto lento all’interno della crosta (con cristalli grandi e visibili ad occhio nudo). Rocce VULCANICHE: raffreddamento rapido o a due stadi (con cristalli di dimensioni più piccole ed, eventualmente, anche con la presenza di vetro). Rocce FILONIANE o IPOABISSALI: con velocità di raffreddamento (e dimensioni dei cristalli) intermedie.

7 Raffreddamento lento Con il raffreddamento lento, si formano meno nuclei e questo permette lo sviluppo di singoli cristalli più grandi. 1 cm Questo è quello che si vede in una roccia ignea intrusiva.

8 Raffreddamento rapido
Raffreddamento rapido = rocce con piccoli cristalli. Si formano molti nuclei cristallini. Addirittura i cristalli possono essere del tutto assenti. Questo è quello che si vede nelle rocce effusive, anche conosciute come rocce vulcaniche. Queste rocce si formano in prossimità della superficie terrestre. Ossidiana

9 Raffreddamento rapido
Vetro o non Vetro? Rocce Plutoniche? MAI VETRO POSSIBILE PRESENZA DI VETRO Rocce Vulcaniche? Non tutte le rocce vulcaniche sono associate alla presenza di vetro. Che sia chiaro.

10 Raffreddamento a due stadi
Molte rocce ignee presentano cristalli con dimensioni molto variabili: alcuni piccoli ed altri grandi. Questa è chiamata microstruttura porfirica. In alcuni casi i cristalli piccoli possono mancare del tutto (microstruttura vitrofirica). La microstruttura porfirica indica raffreddamento a due stadi: In un primo momento il raffreddamento avviene relativamente in modo lento (in profondità); ciò permette lo sviluppo dei cristalli più grandi. A partire da un certo momento, il magma viene raffreddato più rapidamente (es. si avvicina alla superficie): i cristalli più grandi (ed in genere quelli meglio formati) vengono intrappolati in una matrice di materiale a grana più fine o interamente vetrosa.

11 Raffreddamento a due stadi
Molte rocce ignee presentano cristalli con dimensioni molto variabili: alcuni piccoli ed altri grandi. Questa è chiamata microstruttura porfirica. La microstruttura porfirica può essere di due tipi principali: - Porfirica Iatale: presenza di due classi dimensionali di cristalli (molto grandi = fenocristalli; molto piccoli = pasta di fondo). - Porfirica Seriata: presenza di una serie continua di cristalli, da molto piccoli a molto grandi, con la presenza di micro-fenocristalli a dimensioni intermedie tra fenocristalli e cristalli della pasta di fondo.

12 Raffreddamento a due stadi
1 cm

13 Raffreddamento a due stadi
1 cm

14 Raffreddamento a due stadi

15 Raffreddamento a due stadi

16 Raffreddamento a due stadi
2 cm

17 Raffreddamento a due stadi

18 Microstruttura Ignea Questa è una fotografia macroscopica di un GRANITO Roccia composta essenzialmente da: Quarzo Feldspato alcalino Plagioclasio

19 Microstruttura Ignea Questa è una fotografia di una sezione sottile di un granito

20 Microstruttura Ignea mica quarzo Feld. alcalino plagioclasio I vari minerali non sono uniti tra di loro tramite un cemento. I cristalli sono orientati a caso.

21 Microstruttura Ignea mica quarzo Feld. alcalino plagioclasio Questa è una tipica microstruttura olocristallina, faneritica, ipidiomorfa, isotropa, equigranulare.

22 Spieghiamo meglio: Microstruttura Ignea
Olocristallina? Dal greco olo (tutto) ossia con tutti cristalli (senza vetro vulcanico). Faneritica? Dal greco fainomai (apparire) ossia con TUTTI i cristalli visibili (che appaiono). Ipidiomorfa? Con cristalli con facce ben sviluppate e con altri cristalli senza un abito preciso. Isotropa? Con i cristalli orientati a caso (senza particolari orientazioni preferenziali. Equigranulare? Con i cristalli grosso modo delle stesse dimensioni.

23 TERMINI LEGATI ALLA DIMENSIONE E PRESENZA DI CRISTALLI
Microstruttura Ignea TERMINI LEGATI ALLA DIMENSIONE E PRESENZA DI CRISTALLI 1) Ci sono cristalli visibili ad occhio nudo? Si = Domanda n. 2 No = Afirica 2) Tutti i cristalli sono visibili ad occhio nudo? Si = Faneritica (domanda n. 3) No = Domanda n. 4 3) I cristalli sono grosso modo delle stesse dimensioni? Si = Equigranulare No = Inequigranulare 4) I cristalli visibili (fenocristalli) sono associati ad una pasta di fondo vetrosa? Si = Vitrofirica No = Porfirica 5) La pasta di fondo è interamente vetrosa? Si = Pasta di fondo oloialina No = Domanda n. 6 6) La pasta di fondo è interamente cristallina? Si = Pasta di fondo olocristallina No = Domanda n. 7

24 TERMINI LEGATI ALLA DIMENSIONE E PRESENZA DI CRISTALLI
Microstruttura Ignea TERMINI LEGATI ALLA DIMENSIONE E PRESENZA DI CRISTALLI 7) Nella pasta di fondo il vetro è più abbondante dei cristalli? Si = Pasta di fondo ipoialina No = Pasta di fondo ipocristallina 8) Negli interstizi degli eventuali plagioclasi della pasta è presente del vetro? Si = Interstertale No = Intergranulare

25 TERMINI LEGATI ALLA DIMENSIONE E PRESENZA DI CRISTALLI
Microstruttura Ignea TERMINI LEGATI ALLA DIMENSIONE E PRESENZA DI CRISTALLI Abbondanza di fenocristalli in una roccia porfirica (o vitrofirica) 1% 5% 10% Indice di Porfiricità (superficie occupata dai fenocristalli rispetto alla superficie totale) A B C 15% 20% 30% D E F

26 TERMINI LEGATI ALLA FORMA ED AL RAPPORTO TRA I VARI MINERALI
Microstruttura Ignea TERMINI LEGATI ALLA FORMA ED AL RAPPORTO TRA I VARI MINERALI 9) In una roccia con microstruttura faneritica, i cristalli presenti sono tutti senza abito (anedrali)? Si = Autoallotriomorfa No = Ipidiomorfa 10) Ci sono orientazioni preferenziali dei cristalli? Si = Anisotropa (domanda n. 11) No = Isotropa 11) I cristalli iso-orientati sono feldspati? Si = Trachitica (o Trachitoide) No = Anisotropa 12) Ci sono cristalli più grandi che inglobano totalmente altri cristalli più piccoli? Si = Pecilitica (ma vedi anche domanda successiva) No = uno dei casi precedenti

27 TERMINI LEGATI ALLA FORMA ED AL RAPPORTO TRA I VARI MINERALI
Microstruttura Ignea TERMINI LEGATI ALLA FORMA ED AL RAPPORTO TRA I VARI MINERALI 13) I cristalli inglobati sono plagioclasi? Si = Ofitica No = uno dei casi precedenti 14) Sono presenti dei vuoti (buchi) nella roccia? Si = Vescicolare o Scoriacea (vuoti precedentemente occupati dai gas in espansione) No = Compatta o Massiva

28 Alcuni esempi di microstrutture di rocce ignee:
Microstruttura Ignea Alcuni esempi di microstrutture di rocce ignee: Qz Feld Feld Feld Feld Qz Qz Qz Feld Qz Feld Feld Qz Microstruttura Autoallotriomorfa con cristalli anedrali di quarzo e feldspato alcalino pertitico. I cristalli non hanno alcun tipo di faccia ben sviluppata. Microstruttura Ipidiomorfa con cristalli euedrali/subedrali di feldspato alcalino pertitico e quarzo interstiziale anedrale. In molti graniti il quarzo è anedrale in quanto ultimo minerale a cristallizzare.

29 Alcuni esempi di microstrutture di rocce ignee:
Microstruttura Ignea Alcuni esempi di microstrutture di rocce ignee: Vetro Pl Vetro Pl Vetro Ol Microstruttura Vitrofirica con cristalli e frammenti di cristalli euedrali di plagioclasio immersi in una matrice vetrosa (marrone). I cristalli si sono formati prima dell’eruzione. Microstruttura Trachitica con piccoli cristalli euedrali allungati di plagioclasio con orientazione preferenziale che“rivestono” un fenocristallo di olivina. In realtà la M. Trachitica dovrebbe interessare solo i feldspati alcalini.

30 Alcuni esempi di microstrutture di rocce ignee:
Microstruttura Ignea Alcuni esempi di microstrutture di rocce ignee: PdF Pl Pl Cpx Cpx Qz Pl Qz PdF Cpx PdF Qz Pl Pl Microstruttura Porfirica con cristalli euedrali di plagioclasi (bianchi) e clinopirosseni (scuri) immersi in una pasta di fondo micro-cristallina. Microstruttura Porfirica con fenocristalli di quarzo da anedrale a subedrale.

31 Alcuni esempi di microstrutture di rocce ignee:
Microstruttura Ignea Alcuni esempi di microstrutture di rocce ignee: Sf Sf Sf Pl Qz Sf Microstruttura Vitrofirica con un cristallo euedrale di plagioclasio (bianco) e vari sferuliti sempre di plagioclasio. Gli sferuliti si formano in prossimità di “pareti fredde”. Microstruttura Sferulitica con fenocristalli aciculari di anfibolo radianti da cristalli di quarzo e feldspati.

32 Alcuni esempi di microstrutture di rocce ignee:
Microstruttura Ignea Alcuni esempi di microstrutture di rocce ignee: Ol Cavità Microstruttura Vescicolare con grandi cavità sferiche precedentemente occupate dai gas in essoluzione. Campione macroscopico di roccia ignea vulcanica vescicolare. Questo è un esempio di scoria vulcanica. I “buchi” sono le tracce lasciate dai gas in essoluzione quando il magma era ancora relativamente poco viscoso.

33 Alcuni esempi di microstrutture di rocce ignee:
Microstruttura Ignea Alcuni esempi di microstrutture di rocce ignee: Microstruttura Amigdaloide con un vacuolo precedentemente occupato da gas riempito da minerali secondari (clorite, calcite e zeoliti). Si tratta di modifiche avvenute dopo il raffreddamento della lava. Microstruttura Trachitica con cristalli allungati di plagioclasi orientati in modo preferenziale. La iso-orientazione è parallela alla direzione del flusso della lava durante la sua messa in posto.

34 Alcuni esempi di microstrutture di rocce ignee:
Microstruttura Ignea Alcuni esempi di microstrutture di rocce ignee: Microstruttura Ofitica con plagioclasi (cristalli allungati dal colore dal bianco al nero) che sembrano “sospesi” in cristalli più grossi (colorati) di clinopirosseno. Si tratta anche in questo caso di crescita pressoché contemporanea. Microstruttura Subofitica. Rispetto alla precedente, i clinopirosseni sono più abbondanti. Questi sono concentrati nelle aree triangolari tra i vari cristalli di plagioclasio.

35 Alcuni esempi di microstrutture di rocce ignee:
Microstruttura Ignea Alcuni esempi di microstrutture di rocce ignee: Sp Sp Pl Opx Ol Opx Ol Ol Ol Ol Sp Cpx Cpx Opx Cpx Sp Pl Microstruttura Coronitica con augite (clinopirosseno) blu attorno ad un cristallo di olivina (giallo). Sul lato sinistro ed in basso sono presenti plagioclasi. Microstruttura Pecilitica. In questo caso sono presenti vari cristalli (olivine dai colori cangianti e spinelli neri) all’interno di un cristallo più grande (ortopirosseno).

36 Raffreddamento rapido
Raffreddamento rapido = rocce con piccoli cristalli. Si formano molti nuclei cristallini. Questo è quello che si vede nelle rocce effusive, anche conosciute come rocce vulcaniche. Queste rocce si formano in prossimità della superficie terrestre.

37 Quenching (congelamento)
Quando un magma è esposto a temperature relativamente basse (atmosfera terrestre o acqua in superficie) non ha il tempo di adeguare la sua energia per formare cristalli organizzati. Il risultato è la formazione di vetro in un processo chiamato quenching (congelamento). Pomice Ossidiana La struttura della pomice e dell’ossidiana è composta essenzialmente di vetro, ad indicare la sua formazione all’interfaccia tra il vulcano e l’aria.

38 Eruzioni subaquee Pressione Idrostatica Risalita di magma Le lave a cuscino (pillow lavas) si formano quando i flussi di lava si formano in ambiente marino e sono sottoposti ad elevata pressione idrostatica. (Ricordate questo termine nella serie ofiolitica?)

39 Quello che avviene in profondità
Quello che vediamo in superficie (parte superiore della serie ofiolitica)

40 Chilled margins in pillows
1 2 3 4 5 Nei bordi delle lave a cuscino (pillow lavas) si nota il passaggio da un materiale quasi interamente vetroso (marrone chiaro; tessitura oloialina) ad un materiale con numerosi microliti (marrone scuro-nero; tessitura cripto-microcristallina. Perchè?

41

42 Vetro Pl Vetro Anfibolo Vetro Buco Vetro Pl Sferuliti Vetro Buco Bt

43 Ossidiana riolitica parzialmente cristallizzata con sviluppo di sferuliti
Ossidiana dacitica con sviluppo di sferuliti che nucleano al bordo di un cristallo di plagioclasio Da Breitkreuz e Arnosio, 2006.

44 Composizione Un primo tipo di classificazione delle rocce ignee si basa soprattutto sul contenuto in silicio (Si) ed elementi come il ferro (Fe) e magnesio (Mg). Tutti questi elementi vengono espressi in ossidi (SiO2, Fe2O3, MgO). Rocce ricche in Fe e Mg sono chiamate femiche Rocce povere in Fe e Mg sono chiamate felsiche IMPORTANTE: Il termine “femico” o “felsico” non è un termine quantitativo ma solo qualitativo. Cosa vuol dire? Una roccia femica è una roccia ricca in Mg (e Fe) ma non viene detto quanto Mg o quanto Fe ci sia. Le rocce del Mantello, estremamente ricche in Fe e Mg sono chiamate Ultrafemiche.

45 Composizione Un primo tipo di classificazione delle rocce ignee si basa soprattutto sul contenuto in silicio (Si) ed elementi come il ferro (Fe) e magnesio (Mg). Tutti questi elementi vengono espressi in ossidi (SiO2, Fe2O3, MgO). Rispetto al contenuto in SiO2 la classificazione è: - Rocce molto povere in SiO2 (<45%) sono chiamate ultrabasiche Rocce povere in SiO2 (tra 45 e 52%) sono chiamate basiche Rocce ricche in SiO2 (tra 52 e 63%) sono chiamate intermedie Rocce molto ricche in SiO2 (>63%) sono chiamate acide ATTENZIONE: Ritorneremo sul concetto di basicità ed acidità delle rocce quando tratteremo la classificazione delle rocce vulcaniche.

46 Rocce Ignee Felsiche (povere di Fe e Mg)
A grana fine (effusiva) = riolite A grana grossa (intrusiva) = granito Riolite e granito hanno grosso modo la stessa composizione chimica. Differiscono solo nella grandezza dei cristalli. ATTENZIONE: Questi sono solo due dei tanti tipi di rocce felsiche!

47 Rocce Ignee Intermedie
Esempio di roccia a grana fine (effusiva) = andesite 1 cm 1 cm note: molti anfiboli e feldspati, Non c’è quarzo visibile ma potrebbe esserci in altri campioni di andesite.

48 Classificazione delle Rocce Ignee
Solo nel 1989 sono state stabilite le regole ufficiali per classificare le Rocce Ignee con la pubblicazione di un libro a cura di R.W. Le Maitre, secondo le direttive dell’Unione Internazionale di Scienze Geologiche. (International Union of Geological Sciences)

49 CRITERIO MINERALOGICO
Classificazione delle rocce ignee faneritiche La classificazione delle Rocce intrusive si basa sul CRITERIO MINERALOGICO

50 Classificazione di Streckeisen
Classificazione delle rocce ignee faneritiche La classificazione delle rocce ignee faneritiche è anche detta Classificazione di Streckeisen Basato su un suo lavoro pubblicato nel 1976 Su cosa si fonda questo criterio classificativo?

51 Classificazione delle rocce ignee faneritiche
Streckeisen propose di distinguere nelle rocce ignee intrusive due gruppi di minerali: - MINERALI FONDAMENTALI - MINERALI ACCESSORI I minerali fondamentali sono quelli che caratterizzano le rocce e che vengono utilizzati per la classificazione; non è detto che siano i minerali più abbondanti;

52 Classificazione delle rocce ignee faneritiche
Streckeisen propose di distinguere nelle rocce ignee intrusive due gruppi di minerali: - MINERALI FONDAMENTALI - MINERALI ACCESSORI I minerali accessori non incidono nella classificazione ma possono influire negli attributi della nomenclatura; non è detto che siano i minerali meno abbondanti;

53 Classificazione delle rocce ignee
I minerali fondamentali per la stragrande maggioranza delle rocce plutoniche della crosta sono stati raggruppati in quattro categorie, mentre i minerali accessori rientrano in un unico gruppo. Più del 99% delle rocce ignee plutoniche affioranti sulla crosta può venire classificato utilizzando quattro categorie dei minerali fondamentali, ossia: Q = Quarzo A = Feldspati alcalini inclusa l’albite (da An0ad An5) P = Plagioclasi (da An5 ad An100) F = Feldspatoidi (essenzialmente nefelina).

54 Classificazione delle rocce ignee
Questo è il motivo per cui ESIGO che conosciate bene le formule chimiche ed i vari termini dei feldspati (A e P) ed almeno due feldspatoidi (F, nefelina e leucite). Oltre a Q, ovviamente… Q = Quarzo A = Feldspati alcalini inclusa l’albite (da An0ad An5) P = Plagioclasi (da An5 ad An100) F = Feldspatoidi (essenzialmente nefelina).

55 Classificazione delle rocce ignee
Solo una piccolissima parte delle rocce ignee plutoniche affioranti sulla crosta può venire classificata utilizzando un quinto parametro, definito: M = minerali femici ed altri (olivine, pirosseni, anfiboli, miche, melilite, minerali opachi, zircone, apatite, titanite, epidoti, allanite, carbonati, etc.). Ad eccezione delle rocce in cui M >90, tutte le rocce sono classificate tramite i parametri Q, A, P, F che rappresentano minerali non femici.

56 Rocce Ignee Faneritiche
Granitoide ricco in Qz 90 60 20 Qz-Sienite a Feldspati alcalini Qz- Sienite Monzonite Monzodiorite con foidi 5 10 35 65 Sienite a Feldspati alcalini Sienite a Feldspati Alcalini con foidi Monzosienite a nefelina Sienite a nefelina Gabbro a nefelina Qz-Diorite/ Qz-Gabbro/ Diorite/ Gabbro/ Anorthosite Diorite/Gabbro Foidolite (Nefelinolite) Quarzolite Granito Grano- diorite Tonalite Granito a Feld. alcalini Q A P F Sieno- granito Monzo- Qz-Anorthosite Classificazione delle rocce ignee plutoniche [M <90%] La roccia deve contenere almeno il 10% dei minerali QAPF. N.B.: Normalizzare al 100% Classificazione delle Rocce Ignee Faneritiche Doppio Triangolo di Streckeisen

57 Prima di studiare in maggiore dettaglio il doppio triangolo di Streckeisen cerchiamo di capire come si legge un diagramma triangolare. A B C Domanda da 1 Milione di € Qual è la composizione del pallino verde? 0% A 100% A 90% A 80% A 70% A 60% A 50% A 40% A 30% A 20% A 10% A

58 Classificazione delle rocce ignee
Domanda da Milioni di € 1 A B C 100% C Qual è la composizione del pallino verde? 10% C 20% C 30% C 50% C 60% C 70% C 80% C 90% C 40% C 0% C

59 Classificazione delle rocce ignee
Domanda da Milioni di € 2 A B C Qual è la composizione del pallino verde? 50% C 50% A

60 Classificazione delle rocce ignee
Domanda da Milioni di € 3 A B C Qual è la composizione del pallino verde? 80% B 20% A

61 Classificazione delle rocce ignee
5 Domanda da Milioni di € A B C Qual è la composizione del pallino verde? 30% A 60% B 10% C

62 Classificazione delle rocce ignee
10 Qual è la composizione di un assemblaggio composto da: Domanda da Milioni di € A B C A = 30% B = 20 % C = 50 %

63 Classificazione delle rocce ignee
50 Qual è la composizione di un assemblaggio composto da: Domanda da Milioni di € A B C Bisogna normalizzare (riportare) a 100 la somma dei parametri che ci interessano. 40% B A = 20% B = 20 % C = 10 % D = 30 % E = 20 % 50% X X 20% C 100% A 90% A 80% A 70% A 60% A 50% A 40% A 40% A 30% A 20% A 10% A

64 Classificazione delle rocce ignee
49 Qual è la composizione di un assemblaggio composto da: Domanda da Milioni di € A B C Ora basta sostituire alle varie lettere i vari minerali ed il gioco è fatto. A = 20% B = 0 % C = 0 % D = 50 % E = 30 % X X

65 Classificazione delle rocce ignee
ATTENZIONE: Il 70% degli studenti risponde in modo errato alla domanda sulla classificazione delle rocce utilizzando il diagramma di Streckeisen. Perché mi fate questo?

66 Ritorniamo al doppio triangolo di Streckeisen:
Granitoide ricco in Qz 90 60 20 Qz-Sienite a Feldspati alcalini Qz- Sienite Monzonite Monzodiorite con foidi 5 10 35 65 Sienite a Feldspati alcalini Sienite a Feldspati Alcalini con foidi Monzosienite a nefelina Sienite a nefelina Gabbro a nefelina Qz-Diorite/ Qz-Gabbro/ Diorite/ Gabbro/ Anorthosite Diorite/Gabbro Foidolite (Nefelinolite) Quarzolite Granito Grano- diorite Tonalite Granito a Feld. alcalini Q A P F Sieno- granito Monzo- Qz-Anorthosite Ritorniamo al doppio triangolo di Streckeisen: [M <90%] Concentriamoci per il momento solo sul triangolo superiore (QAP) Gran parte delle rocce ignee plutoniche presenti nella crosta rientra in questo volume.

67 Classificazione delle rocce ignee plutoniche
Come si chiama la roccia composta da: 20 % Ortoclasio 10 % Andesina 30 % Augite 10 % Magnetite 20 % Quarzo 10 % Mica Granitoide ricco in Qz 90 60 20 Qz-Sienite a Feldspati alcalini Qz-Monzonite Qz- Monzodiorite Sienite Monzonite 5 10 35 65 Sienite a Feldspati alcalini Qz-Diorite/ Qz-Gabbro/ Diorite/Gabbro/ Anorthosite Quarzolite Granito Grano- diorite Tonalite Granito a Feldspati alcalini Q A P Sieno- granito Monzo- Qz-Anorthosite Si prendono in considerazione solo: Ortoclasio (A) Andesina (P) Quarzo (Q) A = 20 % P = 10 % Q = 20 % Tot. = 50 % Normalizzare a 100: A = 100*20/50 = 40 P = 100*10/50 = 20 Q = 100*20/50 = 40

68 Classificazione delle rocce ignee plutoniche
Facciamo un altro esempio: 10 % Ilmenite 10 % Granato 5 % Apatite 30 % Andesina 30 % Anfibolo 15 % Quarzo Q Quarzolite 90 90 Quali sono i minerali fondamentali in questo caso? Granitoide ricco in Qz P = 30 % Q = 15 % Tot. = 45 % Andesina (P) Quarzo (Q) 60 60 Granito Normalizzare a 100: P = 100*30/45 = 66.6 Q = 100*15/45 = 33.3 Granito a Feldspati alcalini Grano- Tonalite diorite Sieno- granito Monzo- granito Qz-Sienite a Feldspati alcalini 20 20 Qz-Diorite/ Qz- Monzodiorite Qz-Gabbro/ Qz-Sienite Qz-Monzonite Qz-Anorthosite Sienite a Feldspati alcalini 5 5 Diorite/Gabbro/ Sienite Monzonite Monzodiorite 10 35 65 90 Anorthosite A P

69 Minerali fondamentali
Classificazione delle rocce ignee plutoniche Minerali fondamentali Sono quelli la cui presenza (o assenza) fa cambiare completamente il nome di una roccia Granito K-Feldspato Quarzo Plagioclasio Min. Femici Tonalite Quarzo Plagioclasio Min. Femici - K-Feldspato = Granitoide ricco in Qz 90 60 20 Qz-Sienite a Feldspati alcalini Qz- Sienite Monzonite Monzodiorite 5 10 35 65 Sienite a Feldspati alcalini Qz-Diorite/ Qz-Gabbro/ Diorite/ Gabbro/ Anorthosite Quarzolite Granito Grano- diorite Tonalite Granito a Feld. alcalini Q A P Sieno- granito Monzo- Qz-Anorthosite Ricordate: K-Feldspato = A (Alcali Feldspati)

70 Minerali fondamentali
Classificazione delle rocce ignee plutoniche Minerali fondamentali Sono quelli la cui presenza (o assenza) fa cambiare completamente il nome di una roccia Granito K-Feldspato Quarzo Plagioclasio Min. Femici Tonalite Quarzo Plagioclasio Min. Femici - K-Feldspato = Minerali Accessori Sono quelli la cui presenza (o assenza) non è necessaria per definire il tipo di roccia Sienite K-Feldspato Plagioclasio Min. Femici Opachi Apatite Sienite K-Feldspato Plagioclasio Min. Femici Opachi - Apatite =

71 Classificazione delle rocce ignee plutoniche
Granitoide ricco in Qz 90 60 20 Qz-Sienite a Feldspati alcalini Qz- Sienite Monzonite Monzodiorite con foidi 5 10 35 65 Sienite a Feldspati alcalini Sienite a Feldspati Alcalini con foidi Monzosienite a nefelina Sienite a nefelina Gabbro a nefelina Qz-Diorite/ Qz-Gabbro/ Diorite/ Gabbro/ Anorthosite Diorite/Gabbro Foidolite (Nefelinolite) Quarzolite Granito Grano- diorite Tonalite Granito a Feld. alcalini Q A P F Sieno- granito Monzo- Qz-Anorthosite Classificazione delle rocce ignee plutoniche [M <90%] In questo caso quali sono i minerali accessori? Tutti i minerali tranne Q-A-P-F

72 Classificazione delle rocce ignee plutoniche
90 60 20 Sienitoide 5 10 65 con foidi Dioritoide con foidi Gabbroide Foidolite Quarzolite Granitoide Q A P F Dioritoide Anortositoide Classificazione delle rocce ignee plutoniche [M <90%] Classificazione preliminare (di campagna) delle rocce plutoniche

73 Attenzione al significato delle linee che bordano i campi…
Granitoide ricco in Qz 90 60 20 Qz-Sienite a Feldspati alcalini Qz-Monzonite Qz- Monzodiorite Sienite Monzonite 5 10 35 65 Sienite a Feldspati alcalini Qz-Diorite/ Qz-Gabbro/ Diorite/Gabbro/ Anorthosite Quarzolite Granito Grano- diorite Tonalite Granito a Feldspati alcalini Q A P Sieno- granito Monzo- Qz-Anorthosite Nei triangoli di Streckeisen le linee rosse ed azzurre non sono parallele ad un lato, ma dipartono dal vertice Q verso la base. Lungo queste linee il rapporto A:P resta costante (quello che varia è il contenuto in Q ed il contenuto assoluto in A e P).

74 SI Classificazione delle rocce ignee plutoniche
Questa di seguito è la composizione di un granito? 25 % Andesina 20 % Granato 15 % Apatite 25 % Ortoclasio 15 % Quarzo X Granitoide ricco in Qz 90 60 20 Qz-Sienite a Feldspati alcalini Qz-Monzonite Qz- Monzodiorite Sienite Monzonite 5 10 35 65 Sienite a Feldspati alcalini Qz-Diorite/ Qz-Gabbro/ Diorite/Gabbro/ Anorthosite Quarzolite Granito Grano- diorite Tonalite Granito a Feldspati alcalini Q A P Sieno- granito Monzo- Qz-Anorthosite X In pratica ora dovreste conoscere la definizione PRECISA di Granito SI ~23% di Q tra i minerali QAP

75 NO Classificazione delle rocce ignee plutoniche 60% X X
E questo? 35 % Andesina 20 % Fayalite 20 % Biotite 10 % Ortoclasio 15 % Quarzo 60% X X Granitoide ricco in Qz 90 60 20 Qz-Sienite a Feldspati alcalini Qz-Monzonite Qz- Monzodiorite Sienite Monzonite 5 10 35 65 Sienite a Feldspati alcalini Qz-Diorite/ Qz-Gabbro/ Diorite/Gabbro/ Anorthosite Quarzolite Granito Grano- diorite Tonalite Granito a Feldspati alcalini Q A P Sieno- granito Monzo- Qz-Anorthosite ~58 % Andesina (P) ~17 % Ortoclasio (A) 25 % Quarzo (Q) NO P/(A+P)*100 = 35/(35+10)*100 = ~78 25% di Q ma P/(P+A) >65 78

76 20 Qz-Sienite a Feldspati alcalini Qz-Monzonite Qz- Monzodiorite Sienite Monzonite 5 Sienite a Feldspati Qz-Diorite Qz-Gabbro Diorite Gabbro Anorthosite Granito Grano- diorite Tonalite Granito a Feldspati alcalini A P Sieno- granito Monzo- Qz-Anorthosite Q Immaginiamo di avere una roccia con 100 cristalli tutti delle stesse dimensioni 10 35 65 90 Qual è la composizione del pallino verde? 65 cristalli di P e 35 cristalli di A = 65/(65+35) = 65 Quanti cristalli di Q?

77 20 Qz-Sienite a Feldspati alcalini Qz-Monzonite Qz- Monzodiorite Sienite Monzonite 5 Sienite a Feldspati Qz-Diorite Qz-Gabbro Diorite Gabbro Anorthosite Granito Grano- diorite Tonalite Granito a Feldspati alcalini A P Sieno- granito Monzo- Qz-Anorthosite Q Immaginiamo di avere una roccia con 100 cristalli tutti delle stesse dimensioni 10 35 65 90 Qual è la composizione del pallino verde? 5 cristalli di Q e la restante parte (95 cristalli) di A+P Quanti cristalli di A e quanti di P? (95*65)/100 = 61,7 cristalli di P 61,7/(61,7+33,3)*100 = 65 (95*35)/100 = 33,3 cristalli di A

78 Q Immaginiamo di avere una roccia con 100 cristalli tutti delle stesse dimensioni Qz-Sienite a Feldspati alcalini Granito Grano- Tonalite Granito a Feldspati alcalini Qz-Diorite diorite Qz-Gabbro Sieno- granito Monzo- granito Qz-Anorthosite Sienite a Feldspati alcalini Diorite Gabbro 20 20 Qz- Monzodiorite Qz-Sienite Qz-Monzonite Anorthosite 5 5 Sienite Monzonite Monzodiorite A P 10 35 65 90 Qual è la composizione del pallino verde? 20 cristalli di Q e la restante parte (80) di A+P Quanti cristalli di A e quanti di P? (80*65)/100 = 52 cristalli di P 52/(52+28)*100 = 65 (80*35)/100 = 28 cristalli di A

79 Q Immaginiamo di avere una roccia con 100 cristalli tutti delle stesse dimensioni Qz-Sienite a Feldspati alcalini Granito 50 50 Grano- Tonalite Granito a Feldspati alcalini Qz-Diorite diorite Qz-Gabbro Sieno- granito Monzo- granito Qz-Anorthosite Sienite a Feldspati alcalini Diorite Gabbro 20 20 Qz- Monzodiorite Qz-Sienite Qz-Monzonite Anorthosite 5 5 Sienite Monzonite Monzodiorite A P 10 35 65 90 Qual è la composizione del pallino verde? 50 cristalli di Q e la restante parte (50) di A+P Quanti cristalli di A e quanti di P? (50*65)/100 = ~33 cristalli di P ~33/(~33+~17)*100 = ~65 (50*35)/100 = ~17 cristalli di A

80 Q PER RIASSUMERE Qz-Sienite a Feldspati alcalini Granito Grano- Tonalite Granito a Feldspati alcalini Qz-Diorite diorite Qz-Gabbro Sieno- granito Monzo- granito Qz-Anorthosite Sienite a Feldspati alcalini Diorite Gabbro 20 20 Qz- Monzodiorite Qz-Sienite Qz-Monzonite Anorthosite 5 5 Sienite Monzonite Monzodiorite A P 10 35 65 90 Le linee che convergono verso il vertice Q rappresentano il valore del rapporto dei vari tipi di feldspati (Plagioclasi e Feldspati Alcalini). Questo valore resta costante lungo i vari segmenti anche se il valore assoluto (abbondanza) varia.

81 Sono le prime rocce campionate sulla Luna dalla Spedizione Apollo 11
Qz-Sienite a Feldspati alcalini Qz-Monzonite Qz- Monzodiorite Sienite Monzonite 5 Sienite a Feldspati Qz-Diorite Qz-Gabbro Diorite Gabbro Anorthosite Granito Grano- diorite Tonalite Granito a Feldspati alcalini A P Sieno- granito Monzo- Qz-Anorthosite Q 65 90 35 10 20 ANORTOSITI? Sono le prime rocce campionate sulla Luna dalla Spedizione Apollo 11 1) Formazione del LMO (Lunar Magma Ocean) 2) Cristallizzazione di fasi dense (olivina e pigeonite) 3) Affondamento come cumulati di ol e pg. 4) Cristallizzazione di fasi meno dense (plagioclasio) 5) “Galleggiamento” e formazione di una proto-crosta della Luna.

82 Che tipo di Plagioclasio?
La % di anortite nei plagioclasi diminuisce dai gabbri alle dioriti/tonaliti/ monzoniti fino ai graniti/sieniti I plagioclasi dei gabbri sono più calcici (%An in genere >50), poi tonaliti (%An 30-50) e graniti/sieniti (%An 10-40) Granitoide ricco in Qz 20 Qz-Sienite a Feldspati alcalini Qz-Monzonite Qz- Monzodiorite Sienite Monzonite 5 10 35 65 90 Sienite a Feldspati alcalini Qz-Diorite/ Qz-Gabbro/ Diorite/Gabbro/ Anorthosite Granito Grano- diorite Tonalite Granito a Feld. alcalini Q A P Sieno- granito Monzo- Qz-Anorthosite Dim. %An Diminuzione %An Diminuzione %An

83 Per riassumere, la classificazione di Streckeisen fornisce la possibilità di indicare un nome di base ad una roccia. A questo nome di base si possono aggiungere suffissi o prefissi di tipo: - Mineralogico (es. Granito a biotite) - Microstrutturale (es. Granito porfirico) - Chimico (es. Granito ricco in Sr) - Genetico (es. Granito anatettico crostale) - Tettonico (es. Granito sin-collisionale)

84 Classificazione delle rocce ignee plutoniche
Tonaliti? Granodioriti? Graniti? Trondhjemiti? Le rocce felsiche ricche in quarzo e feldspati (GRANITOIDI) possono essere classificate anche secondo un diverso tipo di diagramma: Come si chiama questo gruppo di minerali? Quali sono le differenze con Streckeisen? E questo?

85 Le Trondhjemiti sono graniti con abbondante albite.
Classificazione delle rocce ignee plutoniche Tonaliti? Granodioriti? Graniti? Trondhjemiti? Granitoide ricco in Qz 90 60 20 Qz-Sienite Qz-Monzonite Qz- Monzodiorite Sienite Monzonite 5 10 35 65 Granito Grano- diorite Tonalite Granito a Feldspati alcalini Q A P Sieno- granito Monzo- Le Trondhjemiti sono graniti con abbondante albite.

86 Le rocce granitoidi possono presentarsi sotto forma di:
Classificazione delle rocce ignee plutoniche Le rocce granitoidi possono presentarsi sotto forma di: Rocce Porfiriche (sapete già di cosa si tratta); Apliti: rocce a grana molto fine (leucocratiche, ossia con pochi femici); Pegmatiti: rocce a grana molto grossa con singoli cristalli della dimensione fino a metrica). Questi sono termini generici che fanno riferimento a microstrutture particolari più che a composizioni specifiche.

87 Classificazione delle rocce ignee plutoniche
Ora affronteremo uno studio approfondito di tipo petrologico sulla genesi e classificazione dei graniti.

88 Classificazione delle rocce ignee plutoniche
Sono =

89 Classificazione delle rocce ignee plutoniche
Sia il gelato che il granito in principio sono liquidi che diventano solidi con il raffreddamento e fondono di nuovo se la temperatura sale oltre un certo valore. Tuttavia il gelato congela solo a temperature molto basse, mentre il granito congela a temperature al di sotto di ~650 °C. E’ anche vero che sia i graniti che i gelati all’aumentare della temperatura e all’avvicinarsi al proprio punto di fusione tendono a diventare morbidi (provate a mettere un gelato nel fornetto a microonde).

90 Classificazione delle rocce ignee plutoniche
Sia i gelati che i graniti diventano cristallini quando solidificano. Ovviamente i cristalli saranno di tipi differenti ma in entrambe i casi si può parlare di cristalli. I cristalli nei gelati sono troppo piccoli per essere visti ad occhio nudo, ma ci sono.

91 Classificazione delle rocce ignee plutoniche
Sia i graniti che i gelati possono avere molti “gusti” e colori, ma ognuno di loro ha alcuni componenti fondamentali. Per i gelati gli ingredienti fondamentali sono latte, uova e zucchero. Per i graniti gli ingredienti fondamentali sono plagioclasio, feldspato alcalino e quarzo.

92 Classificazione delle rocce ignee plutoniche
Se non si ha uno dei componenti base, non puoi chiamare i gelati e i graniti con il loro nome. Come per i gelati, ci sono rocce che sembrano graniti (e possono avere molti componenti tipici dei graniti), ma non sono graniti. Es. se un granito è un gelato, una granodiorite è un sorbetto e un’anortosite è uno yogurt congelato.

93 Classificazione delle rocce ignee plutoniche
Sia per i gelati che per i graniti, si possono avere tutti gli ingredienti fondamentali ma questi possono non essere mescolati come si deve e alla fine si avrà qualcosa di diverso (es. un frappé per i gelati o una arenaria per i graniti). Termini “Cioccolata”, “Fragola”, “Vaniglia” per i graniti sono “Peralluminoso” (molto alluminio e pochi alcali), “Peralcalino” (molto sodio e potassio con poco alluminio), Metalluminoso (una via di mezzo).

94 Classificazione delle rocce ignee plutoniche
Sia per i graniti che per i gelati le apparenze possono ingannare. Un gelato a vaniglia può essere molto diverso da un gelato a fragola e pistacchio, ma questi due tipi hanno molti ingredienti simili e sono prodotti fondamentalmente nello stesso modo.

95 Classificazione delle rocce ignee plutoniche
Bene, questo è un granito Che effettivamente non sembra molto simile a quest’altro: Ma anche questo è un granito

96 Classificazione delle rocce ignee plutoniche
Come nei gelati, molte delle cose interessanti nei graniti si trovano nelle cose che vengono aggiunte o mixate e nel modo in cui queste sono servite. I pezzi di cioccolata e le noccioline del granito sono i vari minerali come la biotite e l’orneblenda. I “trucioli” di cioccolato sono gli schlieren (livelli di minerali scuri che si ritrovano nei graniti).

97 Classificazione delle rocce ignee plutoniche
Come nei gelati, molte delle cose interessanti nei graniti si trovano nelle cose che vengono aggiunte o mixate e nel modo in cui queste sono servite. Gli M&M's o i biscottini del granito sono chiamati xenoliti (rocce originariamente fuori del sistema granitico) ed enclave (porzioni scure associate ai graniti). La menta e il pistacchio nel gelato sono come elementi chimici tipo fluoro, boro e titanio nel granito. Sono “ingredienti” presenti in quantità minime ma hanno grossa influenza nel “gusto finale”.

98 Classificazione delle rocce ignee plutoniche
Sia i graniti che i gelati hanno diverse forme... I graniti possono essere serviti (messi in posto) come batoliti (grosse masse arrotondate) o laccoliti (a forma di duomo) o lopoliti (a forma di cono) o sills (ad andamento orizzontale) o dicchi (ad andamento non orizzontale) o.... Come per i gelati, la forma differente non vuol dire nulla rispetto alla composizione.

99 Classificazione delle rocce ignee plutoniche
Sia i graniti che i gelati hanno diverse forme... Nello stesso modo, i gelati possono essere serviti con varie creme, vari tipi di coni etc., e i graniti possono essere serviti (attorniati) da “coni” di rocce ignee, metamorfiche o sedimentarie.

100 Classificazione delle rocce ignee plutoniche
I graniti (o, meglio, le rocce granitoidi, ossia quelle simili ai graniti) formano la maggior parte delle rocce ignee plutoniche continentali. Qual è l’origine di questo tipo di rocce?

101 Classificazione delle rocce ignee plutoniche
Le ipotesi sull’origine dei magmi granitici possono essere raggruppate in due modelli principali: 1. Origine in seguito a fusione parziale di un protolito (roccia di partenza) ricco in Si ed Al e povero in Mg e Fe (es. rocce crostali sedimentarie come argille o areniti).

102 Classificazione delle rocce ignee plutoniche
Le ipotesi sull’origine dei magmi granitici possono essere raggruppate in due modelli principali: 2. Origine in seguito a cristallizzazione frazionata estrema a partire da un fuso basaltico (parleremo meglio in dettaglio di questo argomento più in là nel corso).

103 Classificazione delle rocce ignee plutoniche
Sulla base dell’indice di saturazione in allumina (ASI) e l’indice peralcalino (IP) le rocce granitoidi (e tutte le rocce felsiche in generale) possono essere distinte in: Graniti peralluminosi (Al >Na+K+Ca) (Tanto Al). Graniti peralcalini (Al <Na+K) (Poco Al). Graniti metalluminosi (Al >Na+K; Al <Na+K+Ca) (Medio contenuto in Al).

104 ASI (Alumina Saturation Index) = Al/(Na+K+Ca)
Classificazione delle rocce ignee plutoniche ASI (Alumina Saturation Index) = Al/(Na+K+Ca) IP (Indice Peralcalino), anche conosciuto, in modo sbagliato, come AI (Agpaitic Index) = Al/(Na+K) Graniti peralluminosi (Al >Na+K+Ca) (Tanto Al). Graniti peralcalini (Al <Na+K) (Poco Al). Graniti metalluminosi (Al >Na+K; Al <Na+K+Ca) (Medio contenuto in Al).

105 Di che Alluminio si parla? Della roccia totale o dei feldspati?
Classificazione delle rocce ignee plutoniche Di che Alluminio si parla? Della roccia totale o dei feldspati? Si fa riferimento alla frazione molecolare degli elementi presenti nella roccia. Graniti peralluminosi (Al >Na+K+Ca) (Tanto Al). Graniti peralcalini (Al <Na+K) (Poco Al). Graniti metalluminosi (Al >Na+K; Al <Na+K+Ca) (Medio contenuto in Al).

106 Classificazione delle rocce ignee plutoniche
Minerali con poco o niente Al e tanti alcali Minerali con contenuti variabili in Al, Na, K Minerali con Tanto Al e poco o niente alcali Peralcaline (Ca+Na+K)/Al >1 (Na+K) > Al Metalluminose (Na+K) < Al Peralluminose (Ca+Na+K)/Al <1 Egirina Riebekite Arfvedsonite Enigmatite Pirosseni Orneblenda Biotite Muscovite Cordierite Andalusite Granato Da: Dostal, 2017 (Resources)

107 IMPORTANTE: Gli indici ASI e IP
Classificazione delle rocce ignee plutoniche IMPORTANTE: Gli indici ASI e IP possono essere applicati a tutte le composizioni di rocce ignee, non solo ai graniti!

108 Campo NON Peralluminoso e NON Peralcalino:
Classificazione delle rocce ignee plutoniche Al/(Ca+Na+K) Al/(Na+K) 0,5 1 1,5 2 3 Campo NON Peralluminoso e NON Peralcalino: Metalluminoso Campo Peralluminoso (Al > Alcali+Ca) Campo NON Peralcalino (Al > Alcali) Campo Peralcalino (Alcali > Al)

109 Non esistono composizioni nel campo blu
Classificazione delle rocce ignee plutoniche Al/(Ca+Na+K) Al/(Na+K) 0,5 1 1,5 2 3 Campo Peralluminoso Metalluminoso Campo Non esistono composizioni nel campo blu Campo Peralcalino

110 Non esistono composizioni nel campo blu
Classificare le rocce in termini di saturazione di Al: Massa Mol. Al2O3 = 101,96 Ossido Roccia 1 Roccia 2 Roccia 3 SiO2 63,86 67,95 61,19 TiO2 0,57 0,58 0,69 Al2O3 17,17 15,88 16,84 Fe2O3tot 3,89 4,43 5,47 MnO 0,06 0,07 0,18 MgO 2,72 1,72 0,04 CaO 5,49 3,87 1,28 Na2O 4,20 2,00 9,10 K2O 1,84 3,07 5,18 P2O5 0,20 0,42 0,02 Totale 100,00 Massa Mol. Na2O = 61,98 Massa Mol. K2O = 94,20 Massa Mol. CaO = 56,08 Al/(Ca+Na+K) Al/(Na+K) 0,5 1 1,5 2 3 Campo Peralluminoso Metalluminoso Campo Campo Peralcalino Non esistono composizioni nel campo blu Metall. Perall. Peralc.

111 Classificazione delle rocce ignee plutoniche
Esiste anche la “Classificazione Alfabetica” delle rocce granitoidi: Graniti Tipo M (M = Mantello. Legati a fusione parziale di rocce ignee pre-esistenti); Graniti Tipo I (I = Igneo. Legati a cristallizzazione frazionata di fusi più primitivi); Graniti Tipo S (S = Sedimentario. Legati a fusione parziale di protoliti sedimentari); Graniti Tipo C (C = Charnockitici. Con ortopirosseno); Graniti Tipo A (A = Alcalino, Anidro, Anorogenico). …In realtà questi non sono veri graniti, ma rocce metamorfiche

112 Classificazione delle rocce ignee plutoniche
Ancora altre classificazioni delle rocce granitoidi si basano su parametri chimici come il MALI (Modified Alkali-Lime Index) in: Graniti Calcici; Graniti Calcalcalini; Graniti Alcali-calcici; Graniti Alcalini.

113 Classificazione delle rocce ignee plutoniche
SiO2 (%) Na2O+K2O-CaO (%) 50 60 70 80 -8 -4 4 8 12 Alcalini Alcali-calcici Calc-alcalini Calcici (MALI)

114 Classificazione delle rocce ignee plutoniche
Ossido Roccia 1 Roccia 2 Roccia 3 SiO2 63,86 67,95 61,19 TiO2 0,57 0,58 0,69 Al2O3 17,17 15,88 16,84 Fe2O3tot 3,89 4,43 5,47 MnO 0,06 0,07 0,18 MgO 2,72 1,72 0,04 CaO 4,49 3,87 1,28 Na2O 5,20 2,00 9,10 K2O 1,84 3,07 5,18 P2O5 0,20 0,42 0,02 Totale 100,00 SiO2 (%) (MALI) Na2O+K2O-CaO (%) 50 60 70 80 -8 -4 4 8 12 Alcalini Alcali-calcici Calc-alcalini Calcici

115 C’è ancora qualche punto oscuro…
Classificazione delle rocce ignee plutoniche C’è ancora qualche punto oscuro… 1) Cosa succede se in una roccia i minerali M sono >90%? Se in una roccia il contenuto dei minerali M è superiore al 90% non si può usare il doppio triangolo di Streckeisen.

116 Classificazione delle rocce ignee plutoniche
C’è ancora qualche punto oscuro… 2) …Ma esistono rocce ignee con M >90%? Oltre il 99,5% della Terra è costituito da rocce ignee con M >90%. Tuttavia nella crosta (0,5% del volume della Terra) le rocce con M >90% sono molto rare. L’intero Mantello Terrestre è composto da rocce con M >90%. Per questo tipo di rocce è necessario un altro tipo di classificazione.

117 Classificazione delle rocce ignee faneritiche ultrafemiche [M >90%]
Olivina Clinopirosseno Ortopirosseno Lherzolite Harzburgite Wehrlite Websterite Ortopirossenite Clinopirossenite Websterite ad olivina Peridotiti Pirosseniti 90 40 10 Dunite Il mantello superiore è composto da Peridotiti (>90%) e Pirosseniti (<10%)

118 Classificazione delle rocce ignee faneritiche ultrafemiche [M >90%]
Olivina Clinopirosseno Ortopirosseno Lherzolite Harzburgite Wehrlite Websterite Ortopirossenite Clinopirossenite Websterite ad olivina Peridotiti Pirosseniti 90 40 10 Come si chiama una roccia composta da: Dunite 50% Ol 20% Opx 20% Cpx 10% Sp 90% X

119 Classificazione delle rocce ignee faneritiche ultrafemiche [M >90%]
Olivina Clinopirosseno Ortopirosseno Lherzolite Harzburgite Wehrlite Websterite Ortopirossenite Clinopirossenite Websterite ad olivina Peridotiti Pirosseniti 90 40 10 Come si chiama una roccia composta da: Dunite 62% Ol 30% Opx 3% Cpx 5% Gt 95% X

120 Classificazione delle rocce ignee faneritiche ultrafemiche [M >90%]
Olivina Clinopirosseno Ortopirosseno Lherzolite Harzburgite Wehrlite Websterite Ortopirossenite Clinopirossenite Websterite ad olivina Peridotiti Pirosseniti 90 40 10 Dunite Minerali Fondamentali: Olivina Ortopirosseno Clinopirosseno Olivina = (Mg,Fe)2SiO4 Ortopirosseno = (Mg,Fe)2Si2O6 Clinopirosseno = Ca(Mg,Fe)Si2O6

121 Classificazione delle rocce ignee faneritiche ultrafemiche [M >90%]
Olivina Clinopirosseno Ortopirosseno Lherzolite Harzburgite Wehrlite Websterite Ortopirossenite Clinopirossenite Websterite ad olivina Peridotiti Pirosseniti 90 40 10 Dunite Harzburgite (<5% Cpx; >5% Opx >40% Ol) Lherzolite (>5% Cpx; >5% Opx; >40% Ol) Wehrlite (<5% Opx; >5% Opx; >40% Ol) Dunite (>90% Ol) Pirosseniti (<40% Ol; <10% Q-A-P-F; abbondanti pirosseni) Ol-Websterite (<40% Ol; 5-60% pirosseni) Ortopirossenite (>90% Opx) Clinopirossenite (>90% Cpx)

122 Le Roux et al., 2008 (EPSL)

123 Le Roux et al., 2008 (EPSL)

124 Sano et al., 2002 (J. Petrol)

125 Sano et al., 2002 (J. Petrol)

126 Classificazione delle rocce ignee plutoniche
ATTENZIONE: Ricordate anche che la classificazione su base mineralogica va effettuata tramite lo studio delle sezioni sottili al microscopio polarizzatore. Non basta una osservazione ad occhi nudi per classificare con precisione una roccia plutonica.

127 Credits Alcune figure e schemi da:
J. Winter - Lezioni per il corso di Igneous Petrology A. Philpotts – Petrography of Igneous and Metamorphic Rocks (2003) Waveland Press P. Tomascak - Lezioni di Geologia Rob’s granite page: Plummer, McGear and Carlson Physical Geology (1999) McGraw Hill ed. Vi consiglio anche di visitare il sito:

128 Per commenti, chiarimenti o informazioni su queste slides:
Ogni anno cerco di migliorare la qualità della presentazione ed aggiungo nuove informazioni. Cercate quindi su internet di scaricare sempre la versione più aggiornata di queste slides. Per commenti, chiarimenti o informazioni su queste slides:

129 Suggerimenti per migliorare la cultura musicale e per vivere meglio:
(da ascoltare in religioso silenzio e attenzione fino alla fine) 1) Francesco del Gesù nel brano che lo fece diventare famoso ( 2) Il mio gruppo preferito in un brano da brividi e da lacrime ( 3) Il trio canadese di rock progressivo più famoso al mondo (


Scaricare ppt "Riassunto della puntata precedente:"

Presentazioni simili


Annunci Google