La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Algebra di Boole e sue applicazioni

Presentazioni simili


Presentazione sul tema: "Algebra di Boole e sue applicazioni"— Transcript della presentazione:

1 Algebra di Boole e sue applicazioni
Cristian Fabbris 3^EA I.T.I.S. Maserati - Voghera

2 Indice La Vita L’Algebra di Boole Le operazioni fondamentali
Il Sistema Numerico Binario Principi dell’Algebra di Boole applicata ai circuiti digitali La tabella della verità Termini massimi e minimi Le porte logiche Esercizi L’Algebra di Boole e la relazione ufficiale sull’11/9 Cristian Fabbris

3 George Boole George Boole (Lincoln, 2 novembre Ballintemple, 8 dicembre 1864) è stato un matematico e logico britannico considerato il fondatore della logica matematica. Studiò la matematica fin da giovane sui testi di Laplace e Lagrange. Morì per una grave forma febbrile causata da un banale raffreddore all'età di soli 49 anni. Boole si dedicò allo studio di metodi algebrici per la risoluzione di equazioni differenziali che gli fecero ottenere una medaglia della Royal society e nel 1849 la nomina alla cattedra di matematica al Queen's College di Cork. Nel 1854 pubblicò la sua opera più importante indirizzata alle leggi del pensiero, con la quale propose una nuova impostazione della logica: dopo aver rilevato le analogie fra oggetti dell'algebra e oggetti della logica, ricondusse le composizioni degli enunciati a semplici operazioni algebriche. Con questo lavoro fondò la teoria di quelle che attualmente vengono dette algebre di Boole (o semplicemente algebra booleana). Cristian Fabbris

4 L’algebra di Boole L'algebra di Boole segue le regole della logica con variabili "binarie" che possono cioè assumere solo due valori. I due possibili stati che possono assumere le variabili binarie sono tali che si escludano a vicenda: una variabile può assumere o il valore falso o il valore vero, o lo zero o l'uno. Questi valori, all'interno dell'architettura dei calcolatori, sono abbinati, entro opportune tolleranze, a due tensioni differenti denominate livello logico alto e livello logico basso. Cristian Fabbris

5 Le operazioni fondamentali
Le operazioni fondamentali dell'algebra di Boole sono tre: la negazione, la somma logica e il prodotto logico. Attraverso queste è possibile realizzare tutte le altre operazioni più complesse che un calcolatore è in grado di compiere. Cristian Fabbris

6 Il Sistema Numerico Binario
Anche i moderni calcolatori utilizzano il sistema numerico binario (1 e 0), messo a punto dallo stesso Boole, per poter rappresentare un’informazione che può essere un numero o una lettera. Cristian Fabbris

7 Principi dell’algebra di Boole applicata ai circuiti digitali
George Boole dimostrava che la maggior parte del pensiero logico, privata di particolari irrilevanti e verbosità, potesse essere concepita come una serie di scelte. Questa idea è divenuta la base dei computer. Cristian Fabbris

8 La tabella della verità
Le tabelle di verità sono tabelle matematiche usate nella logica per determinare se una certa espressione è vera, oppure valida. La tabella di verità elenca tutte le possibili combinazioni di valori che possono assumere le variabili booleane ed il risultato della funzione. Le tabelle di verità applicate alla logica classica sono limitate alla logica booleana dove sono ammessi soltanto 2 valori, vero e falso. Cristian Fabbris

9 Termini massimi e termini minimi
Si intende come termine minimo di n variabili un prodotto logico in cui tutte le n variabili compaiono nella loro forma vera o complementata. Si intende come termine massimo di n variabili una somma logica in cui tutte le n variabili compaiono nella loro forma vera o complementata. I termini minimi sono anche chiamati MINTERMS, mentre i termini massimi sono anche chiamati MAXTERMS. Cristian Fabbris

10 Porta logica AND La funzione logica AND fornisce un'uscita "vera" solo quando tutti gli ingressi sono "veri". Analogamente, una porta logica AND fornisce un livello logico "1" solo quando tutti gli ingressi presentano un livello logico "1". Cristian Fabbris

11 Porta logica NAND La funzione logica NAND fornisce un'uscita "falsa" solo quando tutti gli ingressi sono "veri". Analogamente, una porta logica NAND fornisce un livello logico "0" solo quando tutti gli ingressi presentano un livello logico "1". Cristian Fabbris

12 Porta logica OR La funzione logica OR fornisce un'uscita "vera" quando almeno un ingresso è "vero". Analogamente, una porta logica OR fornisce un livello logico "1" quando almeno un ingresso presenta un livello logico "1". Cristian Fabbris

13 Porta logica NOR La funzione logica NOR fornisce un'uscita "falsa" quando almeno un ingresso è"vero". Analogamente, una porta logica NOR fornisce un livello logico "0" quando almeno un ingresso presenta un livello logico "1". Cristian Fabbris

14 Porta logica NOT La funzione logica NOT fornisce un'uscita "vera" quando il suo ingresso presenta una condizione "falsa" e viceversa. Analogamente, una porta logica NOT fornisce un livello logico "1" quando il suo ingresso presenta un livello logico "0" e viceversa. Cristian Fabbris

15 Esercizi Si semplifichino, si disegnino i relativi circuiti e si costruiscano le tavole della verità complete in riferimento alle seguenti espressioni booleane: ABC° + AB + AC + C A°B°C + AB° + A°B° + AB A + AB + B + BC Applicando i teoremi dell'algebra di Boole, verificare se le espressioni seguenti sono equivalenti. A°B°C° + BC° + A (B + (BC)° ) A + C° Cristian Fabbris

16 L’algebra di Boole e la relazione ufficiale sull’11/9
L’Algebra di Boole è stata utilizzata dai matematici per poter “confutare” la relazione ufficiale sui drammatici fatti accaduti l’11 settembre 2001 a New York, dato che considera i valori di verità e non i numeri. Secondo i matematici questa relazione ufficiale non può essere sostenuta su almeno 22 punti. Cristian Fabbris Fine

17 Fine


Scaricare ppt "Algebra di Boole e sue applicazioni"

Presentazioni simili


Annunci Google