Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
PubblicatoΚασσάνδρα Λούπης Modificato 6 anni fa
1
WORKING WITH BIOSEQUENCES Alignments and similarity search
2
IV LEZIONE Allineamento locale Ricerca di similarita’ BLAST
3
Allineamento locale. Perchè?
Sequenze diverse possono presentare una o piu’ brevi regioni di similarità pur essendo diverse nelle restanti regioni. Queste potrebbero risultare non allineabili con un metodo per allineamento globale di sequenze. Esempio: I geni Homeobox mostrano una regione di sequenza altamente conservata, codificante l’Homeodominio, un dominio legante il DNA. Un allineamento globale tra sequenze di fattori di trascrizione diversi con omeodominio potrebbe non individuare la corrispondente regione di similarità, mentre un allineamento locale risulta estremamente utile.
4
ALGORITMO DI SMITH & WATERMAN PER L’ALLINEAMENTO LOCALE
Lo scopo degli algoritmi di allineamento locale di due sequenze e’ trovare la regione piu’ lunga della prima sequenza che produce un allineamento ottimale, dati certi parametri, con una regione della seconda.
5
ALGORITMO DI SMITH & WATERMAN PER L’ALLINEAMENTO LOCALE
Anche il metodo di Smith and Waterman utilizza una matrice per comparare le due sequenze Il valore numerico contenuto in ciascuna cella rappresenta il punteggio dell’allineamento locale che termina ai due residui corrispondenti I valori inferiori a 0 vengono posti a 0 Cosi’, l’identificazione dei punteggi piu’ alti nella matrice permette di trovare i migliori allineamenti locali tra le due sequenze. Per misurare la bonta’ degli allineamenti si definiscono due funzioni: SIMILARITY SCORE dipende dal PUNTEGGIO PER IL MATCH di residui e dal numero di matches GAP PENALTY dipende dal numero e dalla lunghezza dei gaps
6
The Smith-Waterman algorithm implements a very straightforward variation of the Needleman-Wunsch algorithm, which is to replace the overall score of the alignment by zero if it takes on negative values for all alternative pathways. Forward algorithm of the Needleman and Wunsch algorithm to recursively compute the entries of the alignment matrix. The grey box represents the additional parcel of the Smith Waterman algorithm
7
Il punteggio complessivo risultera’:
CALCOLO DEL PUNTEGGIO PER UN ALLINEAMENTO Data una coppia di sequenze Sa e Sb Per ogni coppia di elementi ai e bj di Sa e Sb si definisce un punteggio s(ai,bj) s(ai,bj) = se ai = bj s(ai,bj) = se ai bj , con > Ad ogni ogni gap viene assegnato un punteggio dato da: Wk = + (k-1) Dove Wk e’ una funzione lineare che assegna una penalita’ constante alla presenza del gap (, ad es. -10) e una penalita’ proporzionale alla lunghezza del gap meno uno. (gap opening penalty, GOP) (gap extension penalty, GEP) Il punteggio complessivo risultera’: (s(ai,bj) ) + (Wk) SIMILARITY SCORE MISMATCHES MATCHES GAP PENALTY GAPS
8
CALCOLO DEL PUNTEGGIO PER UN ALLINEAMENTO
Sequenze: Possibile allineamento: ATTCCGAG AGAC Assegno i seguenti punteggi: Match: +2 Mismatch: -1 GOP: -5 GEP: -2 MATCHES 3 3 x 2 = 6 MISMATCHES 1 1 x –1 = -1 SIMILARITY SCORE 6 –1 = 5 GAPS 1 (lungo 4 nucleotidi) GOP + GEP X 3 GOP -5 GEP -2 x 3 GAP PENALTY (3 x –2) = -11 PUNTEGGIO FINALE 5 – 11 = -6 ATTCCGAG | || A----GAC
9
RICERCA DI SIMILARITÀ Una sequenza “da sola” non e’ informativa, deve essere analizzata comparativamente al contenuto dei database perche’ possano essere formulate delle ipotesi sulla sue relazioni evolutive con sequenze simili o sulla sua funzione. Domande cui si puo’ rispondere con una ricerca di similarita’: Data una sequenza, ci sono cose simili nel database? Ho trovato un nuovo gene o una nuova proteina? Il gene ha somiglianze con qualche altro gene nella stessa specie o in altre specie? Fare ipotesi sulla funzione di una proteina Trovare le regione di sovrapposizione tra sequenze contigue Trovare la regione genomica codificante un trascritto Studiare l’evoluzione di popolazioni o specie
10
Percentuale di omologia
RICERCA DI SIMILARITÀ SIMILARITA’ ? OMOLOGIA OMOLOGIA proprieta’ di caratteri (sequenze) dovuta alla loro derivazione dallo stesso antenato comune SIMILARITA’ “grado” di somiglianza tra 2 sequenze La similarita’ osservata tra due sequenze PUO’ indicare che esse siano omologhe, cioe’ evolutivamente correlate La similarita’ e’ una proprieta’ quantitativa, si puo’ misurare L’omologia e’ una proprieta’ qualitativa, non si puo’ misurare. La similarita’ tra sequenze si osserva, l’omologia tra sequenze si puo’ ipotizzare in base alla similarita’ osservata. Percentuale di similarita’ Ricerca di similarita’ Percentuale di omologia Ricerca di omologia
11
OMOLOGIA E OMOPLASIA ORTOLOGIA E PARALOGIA OMOLOGIA
Omologia similarita’ dovuta a derivazione dallo stesso antenato comune Omoplasia similarita’ dovuta a convergenza, stessa pressione selettiva su due linee evolutive puo’ condurre a caratteri simili ORTOLOGIA E PARALOGIA OMOLOGIA ANTENATO COMUNE ORTOLOGIA PARALOGIA PROCESSO DI SPECIAZIONE DUPLICAZIONE GENICA Descrivo le relazioni tra geni di una famiglia intraorganismo (paralogia) o tra diversi organismi (ortologia)
13
. Dimensioni delle banche dati
Ripetitività delle ricerche Lentezza degli algoritmi “esatti” Sistemi rapidi ma approssimati di allineamento Metodi euristici per l’allineamento gli algoritmi esatti effettuano delle ricerche esaustive ed esplorano tutto lo spazio degli allineamenti possibili (programmazione dinamica) si tratta comunque di algoritmi di ordine n2, ovvero per allineare due sequenze lunghe ognuna 1000 residui, effettuano 1000x1000 = un milione di confronti: troppo lenti!!!! la crescita esponenziale delle dimensioni delle banche dati di sequenze biologiche ha portato allo sviluppo di programmi (come FASTA e BLAST) in grado di effettuare velocemente ricerche di similarità, grazie a soluzioni euristiche che sono basate su assunzioni non certe, ma estremamente probabili. In pratica la ricerca è resa più veloce a scapito della certezza di avere veramente trovato la soluzione migliore .
14
Basic Local Alignment Search Tool
BLAST Basic Local Alignment Search Tool (Altschul 1990) L’ algoritmo di BLAST e’ euristico e opera: Tagliando le sequenze da comparare in piccoli pezzi (parole) Ignorando tutte le coppie di parole (sequenza query/database) la cui comparazione da’ un punteggio inferiore ad un limite fissato Cercando di estendere tutte le hits rimanenti sino a che l’allineamento locale raggiunge un certo punteggio Dati una SEQUENZA QUERY ed un DATABASE DI SEQUENZE, BLAST ricerca nel database “parole” di lunghezza almeno “W” con un punteggio di similarita’ di almeno “T” una volta allineate con la sequenza “query” (HSP, High Scoring Pairs). Le “parole” selezionate vengono estese, se possibile, fino a raggiungere un punteggio superiore a “S” oppure un “E-value” inferiore al limite specificato.
16
1- Seeding In sequenze di DNA W = 7 In sequenze proteiche W = 2-3
17
Two-hits algorithm Le word-hits tendono a clusterizzare lungo le diagonali L’algoritmo two-hits richiede che le word-hits siano entro una distanza prestabilita
18
2 - Extension La fase successiva comporta l’estensione dei seed
L’estensione avviene in entrambe le direzioni Blast ha un meccanismo per decidere quando fermare l’estensione
19
3 - Evaluation Estensione verso destra >>>>
The quick brown fox jumps over the lazy dog ||| ||| ||||| | | || The quiet brown cat purrs when she sees him The quick brown fox jump ||| ||| ||||| | The quiet brown cat purr Score -> drop off score -> Estensione verso destra >>>> Diamo punteggio +1 a ciascun match –1 a ciascun mismatch. Calcoliamo il drop off score a partire dal massimo raggiunto (punteggio 9). Quando il drop off raggiunge 5, si interrompe l’estensione.
20
Il risultato di una ricerca di similarita’ e’ una lista dei migliori allineamenti, tra la sequenza query e le sequenze “estratte” dal database. La SIGNIFICATIVITA’ di ciascun allineamento si calcola come P value o E value P value e’ la probabilita’ di ottenere un allineamento con punteggio uguale o migliore di quello osservato Si calcola mettendo in relazione il punteggio osservato (S) con la distribuzione attesa di HSP quando si comparano sequenze random della stessa lunghezza e composizione di quella in analisi (query sequence) Piu’ il P value e’ vicino a 0 piu’ e’ significativo 2x e’ meglio do !!! E value e’ il numero atteso di allineamenti con punteggio uguale o migliore di quello osservato Piu’ e’ basso piu’ e’ buono
21
Significatività di un allineamento
Sequenze allineate Osservazione ATTGCCCACGTTCGCGATCG ATAGGGCACTTT-GCGATGA ** * *** ** ***** Ipotesi alternative OMOLOGIA? CASO?
22
Significatività di un allineamento
Sequenze originali Allineamento (matrice Blosum62, gap=-11) Seq1 V D C - C Y Seq2 V E C L C Y Score Score = 20 Seq1 Seq2 V D C C Y V E C L C Y Allineamento (matrice Blosum62, gap=-11) Seq1 Seq2 C D V Y - C C V E Y L C Score = 9 Score Sequenze randomizzate Seq1 Seq2 Ripetere (es volte) salvando tutti i punteggi C D V Y C C V Y L E C Distribuzione score casuali Frequenza Score allineamento (20) Score
23
Usare BLAST OPZIONI Sequenza query nucleotidica proteica (sequenza in formato FASTA, GenBank Accession numbers o GI numbers) Database database di seq. nucleotidiche database di seq. proteiche Programma Standard BLAST (blastn) Standard protein BLAST (blastp) translated blast (blastx, tblastn, tblastx) MEGABLAST PSI-BLAST PHI-BLAST … Blast selection table
24
Usare BLAST database di seq. nucleotidiche
nr All GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS, or phase 0, 1 or 2 HTGS sequences). No longer "non- redundant". est Database of GenBank+EMBL+DDBJ sequences from EST division. est_human est_mouse htgs Unfinished High Throughput Genomic Sequences yeast Saccharomyces cerevisiae genomic nucleotide sequences mito Database of mitochondrial sequences vector Vector subset of GenBank(R), NCBI, in month All new or revised GenBank+EMBL+DDBJ+PDB sequences alu Select Alu repeats from REPBASE, suitable for masking Alu repeats from query sequences. dbsts Database of GenBank+EMBL+DDBJ sequences from STS division. chromosome Searches Complete Genomes, Complete Chromosome, or contigs form the NCBI Reference Sequence project.
25
Usare BLAST PROGRAMMI Blastn Nucleotide query - Nucleotide db
Blastp Protein query - Protein db Translating BLAST attraverso la traduzione concettuale della query sequence o dei database permette di comparare una sequenza nucleotidica con database di proteine o viceversa. Translated query - Protein db blastx Protein query - Translated db tblastn Translated query - Translated db tblastx MEGABLAST usa un algoritmo greedy (ingordo) veloce ed ottimizzato per comparare sequenze che differiscono poco Search for short nearly exact matches blastn con parametri scelti in modo da ottimizzare la ricerca di matches quasi esatti e brevi. Questi si trovano spesso per caso, percio’ utilizza alto E-value, piccola dimensione della parola e filtering PSI-BLAST Find members of a protein family or build a custom position- specific score matrix PHI-BLAST Find proteins similar to the query around a given pattern
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.