Scaricare la presentazione
1
Mat_Insieme Lavoro di Gruppo Prodotti Notevoli
Tabella di Scomposizioni Test Scomposizioni S. AQUINO IPSIA PITTONI
2
I Prodotti Notevoli Quadrato di binomio Cubo di binomio
Quadrato di polinomio Potenza n-esima di binomio Somma per differenza Altri prodotti notevoli S. AQUINO IPSIA PITTONI
3
Quadrato di un Binomio Cerchiamo la regola La regola
Il significato geometrico Esempi Esercizi proposti S. AQUINO IPSIA PITTONI
4
Quadrato di binomio: significato algebrico
(a+b)2 = (a+b) (a+b) = = a2+ab+ab+b2 = = a2+2ab+b2 S. AQUINO IPSIA PITTONI
5
Quadrato di binomio: la regola
( a + b ) 2 = a 2 + 2ab + b 2 Il quadrato di un binomio è un trinomio avente per termini: il quadrato del 1° monomio il doppio prodotto del 1° monomio per il 2° il quadrato del 2° monomio S. AQUINO IPSIA PITTONI
6
Quadrato di binomio: significato geometrico
(a + b) (a + b)2 a2 b2 ab (a + b)2 = a2 + 2 ab + b2 S. AQUINO IPSIA PITTONI
7
Quadrato di binomio: esempi
(2a+b)2 = (2a)2+2(2a)(+b)+(+b)2 = 4a2 + 4ab + b2 (2a - b)2 = (2a)2+2(2a)(-b)+(-b)2 = 4a2 - 4ab + b2 (3a+2b)2 = (3a)2 +2(3a)(+2b) +(+2b)2 = 9a2 +12ab +4b2 (3a -2b)2 = (3a)2 +2(3a)(-2b) +(-2b)2 = 9a ab +4b2 (-3a -2b)2 = (-3a)2 +2(-3a)(-2b)+(-2b)2 = 9a2 +12ab +4b2 (-3a+2b)2 = (-3a)2 +2(-3a)(+2b)+(+2b)2 = 9a2 -12ab+4b2 S. AQUINO IPSIA PITTONI
8
Quadrato di binomio: esercizi
(3a - 4b)2 = (-2x - 3y)2 = (a2 + 3b)2 = (5a - 3b)2 = (5a2 + 2b2)2 = (-3a3 + 2b2)2 = (2ab - 3b)2 = (7xy - 2x)2 = 4a a + 49 9a ab + 16b2 4x xy + 9y2 a4 + 6 a2b + 9b2 25a2 - 30ab + 9b2 25a a2b2 + 4b4 9a a3b2 + 4b4 4a2b ab2 + 9b2 49x2y x2y + 4x2 S. AQUINO IPSIA PITTONI
9
Quadrato di binomio: esercizi
S. AQUINO IPSIA PITTONI
10
Cubo di un Binomio Cerchiamo la regola La regola
Il significato geometrico Esempi Esercizi proposti S. AQUINO IPSIA PITTONI
11
Cubo di binomio: significato algebrico
(a+b)3 = (a+b)2 (a+b) = = (a2+2ab+b2) (a+b) = = a3+a2b+2 a2b+2ab2+ab2+b3= = a3 + 3a2b + 3ab2 + b3 S. AQUINO IPSIA PITTONI
12
Cubo di binomio: la regola
( a + b ) 3 = a 3 + 3a2b + 3ab2 + b 3 Il cubo di un binomio è un quadrinomio avente per termini: il cubo del 1° monomio il triplo prodotto del quadrato del 1° per il 2° il triplo prodotto del 1° per il quadrato del 2° il cubo del 2° monomio S. AQUINO IPSIA PITTONI
13
Cubo di binomio: significato geometrico
(a + b)3 = a3 + 3a2b + 3ab2 + b3 S. AQUINO IPSIA PITTONI
14
Cubo di binomio: esempi
(2a+b)3 = (2a)3 +3(2a)2(+b) +3(2a)(+b)2 +(+b)3 = = 8a3 + 12a2b + 6ab2 + b3 (2a - b)3 = (2a)3+3(2a)2(-b)+3(2a)(-b)2 +(-b)3 = = 8a3 - 12a2b + 6ab2 - b3 (-3a -2b)3 = (-3a)3 +3(-3a)2 (-2b)+3(-3a)(-2b)2 +(-2b)3 = = -27a a2 b - 36ab2 - b3 (-3a +2b)3 = (-3a)3 +3(-3a)2 (+2b)+3(-3a)(+2b)2 +(+2b)3 = -27a a2 b - 36ab2 + b3 S. AQUINO IPSIA PITTONI
15
Cubo di binomio: esercizi
8a3+12a2+6a+1 (2a + 1)3 = (3a - b)3 = (-2x - 3y)3 = (a2 + 3b)3 = (a - 3b)3 = (a2 + 2b2)3 = (-3a3 + 2b2)3 = (2ab - 3b)3 = 27a3-27a2b+6ab2-b3 -8x3-36x2y-54xy2-27y3 a6+9a4 b+27a2b2+27b3 8a3-36a2 b+54ab2 -27b3 a6+6a4 b2+12a2b4+8b6 -27a9+54a6b2-36a3b4+8b6 8a2b2-36a2 b3+54ab3-27b3 S. AQUINO IPSIA PITTONI
16
Cubo di binomio: esercizi
S. AQUINO IPSIA PITTONI
17
Quadrato di un Polinomio
Cerchiamo la regola La regola Il significato geometrico Esempi Esercizi proposti S. AQUINO IPSIA PITTONI
18
Quadrato di polinomio: significato algebrico
(a+b+c)2 = (a+b+c) (a+b+c) = = a2+ab+ac+ab+b2+bc+ac+bc+c2 = = a2 + b2 + c2 +2ab + 2ac + 2bc S. AQUINO IPSIA PITTONI
19
Quadrato di polinomio: la regola
(a+b+c)2 = a2+b2+c2+2ab+2ac+2bc Il quadrato di un polinomio di un numero qualsiasi di termini è un polinomio avente per termini: il quadrato di tutti i termini il doppio prodotto (con il relativo segno) di ciascun termine per tutti quelli che lo seguono S. AQUINO IPSIA PITTONI
20
Quadrato di polinomio:significato geometrico
(a+b+c) (a+b+c)2 a b c a2 b2 ab c2 ac bc (a+b+c)2 = a2+b2+c2+2ab+2ac+2bc S. AQUINO IPSIA PITTONI
21
Quadrato di polinomio: esempi
(2a + b + 3c)2 = =(2a)2+(+b)2+(+3c)2+2(2a)(+b)+2(2a)(+3c)+2(+b)(+3c) = 4a2 + b2 + 9c2 + 4ab + 12ac + 12bc (2a - b - c)2 = = (2a)2+(-b)2+(-c)2+2(2a)(-b)+2(2a)(-c)+2(-b)(-c)= = 4a2 + b2 + c2 - 4ab - 4ac + 2bc (-3a - 2b + c )2 = =(-3a)2+(-2b)2+(+c)2+2(-3a)(-2b)+2(-3a)(+c)+2(-2b)(+c) = 9a2 + 4b2 + c2 + 12ab - 6ac - 4bc S. AQUINO IPSIA PITTONI
22
Quadrato di polinomio: esercizi
(2a + 2b + 7)2 = (3a - 4b - 2c)2 = (-2x - 3y + 1)2 = (a2 + 3b - c)2 = (5a + 2b + c)2 = (-3a3+2b2+1)2 = (2ab - 3b - 2)2 = (7xy - 2x - 1)2 = 4a2+4b2+49+8ab+24a+24b 9a2+16b2+4c2-24ab-12ac+16bc 4x2+9y xy - 4x - 6y a4+9b2+c2 + 6a2b - 2a2c - 6bc 25a2+4b2+c2 +20ab+10ac+4bc 9a6 +4b a3b2- 6a3+4b2 4a2b2 +9b2+4-12ab2-8ab+12b 49x2y2+4x x2y -14xy+4x S. AQUINO IPSIA PITTONI
23
Potenza n-esima di Binomio
Cerchiamo la regola Triangolo di Tartaglia La regola Esempi Esercizi proposti S. AQUINO IPSIA PITTONI
24
Potenza n-esima di binomio: cerchiamo una regola
(a+b)0 = 1 (a+b)1 = a+b (a+b)2 = a2+2ab+b2 (a+b)3 = a3+3a2b+3ab2+b3 (a+b)4 = a4+4a3b+6a2b2+4ab3+b4 (a+b)5 = a5+5a4b+10a3b2+10a2b3+5ab4+b5 (a+b)6 = a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6 lo sviluppo di (a+b)n contiene sempre n+1 termini i coefficienti dei termini estremi e di quelli equidistanti dagli estremi sono uguali in ogni termine dello sviluppo gli esponenti della lettera a decrescono da an ad a0=1 e gli esponenti della lettera b crescono da b0=1 a bn i coefficienti possono essere disposti secondo uno schema detto “ Triangolo di Tartaglia” S. AQUINO IPSIA PITTONI
25
Potenza n-esima di binomio: Triangolo di Tartaglia
(a+b)0 = 1 (a+b)1 = (a+b)2 = (a+b)3 = (a+b)4 = (a+b)5 = (a+b)6 = In questo prospetto: ogni riga inizia e termina con 1 ogni altro numero si ottiene sommando quelli sovrastanti della riga precedente S. AQUINO IPSIA PITTONI
26
Potenza n-esima di binomio: la regola
(a+b)n = an+nan-1b + ……. + nabn-1+bn La potenza n-esima di un binomio è un polinomio omogeneo di grado n, ordinato e completo secondo le potenze decrescenti di a e crescenti di b, i cui coefficienti si ottengono dal Triangolo di Tartaglia. In pratica, si procede nel seguente modo: si scrive la parte letterale di ogni monomio tenendo conto che è di grado n e le potenze di a decrescono (da n fino a 0) e di b crescono(da 0 ad n) si calcolano i coefficienti di ogni monomio con il Triangolo di Tartaglia S. AQUINO IPSIA PITTONI
27
Potenza n-esima di binomio: esempi
(a + b)4 = (a)4+4(a)3(+b)+6(a)2(+b)2+4(a)(+b)3+(+b)4 = = a4 + 4a3b + 6a2b2 + 4ab3 + b4 (a - b)4 = (a)4+4(a)3(-b)+6(a)2(-b)2+4(a)(-b)3+(-b)4 = = a4 - 4a3b + 6a2b2 - 4ab3 + b4 (2a+b)5 = =(2a)5+5(2a)4(b)+10(2a)3(b)2+10(2a)2(b)3 +5(2a)(b)4+(b)5 =32a5+5(16a4)(b)+10(8a3)(b2) +10(4a2)(b3) +5(2a)(b4)+b5 =32a5 + 80a4b + 80a3b2 + 40a2b3 + 10ab4 + b5 (3a-2b)4 = =(3a)4 +4(3a)3(-2b)+6(3a)2(-2b)2+4(3a)(-2b)3+(-2b)4 = =81a4 +4(27a3)(-2b)+6(9a2 )(+4b2)+4(3a)(-8b3)+16b4= = 81a a3b + 216a2b ab3 + 16b4 S. AQUINO IPSIA PITTONI
28
Potenza n-esima di binomio: esercizi
(2a - b)4 = (a +b)7 = (a - b)7 = (a - b)6 = (a +2b)4 = (a - 2b)4 = (a +2b)5 = (-x - y)5 = 16a4 - 32a3b + 24a2b2 - 8ab3 + b4 a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7 a7-7a6b+21a5b2-35a4b3+35a3b4-21a2b5+7ab6-b7 a6- 6a5b +15a4b2 - 20a3b3+15a2b4 - 6ab5+ b6 a4 + 8a3b + 24a2b2 + 32ab3 + 16b4 a4 - 8a3b + 24a2b2 - 32ab3 + 16b4 a5 +10a4b + 40a3b2+ 80a2b3 +80ab4+32b5 - x5 - 5x4 y - 10x3y2 - 10x2y3 - 5xy4 - y5 S. AQUINO IPSIA PITTONI
29
Somma per differenza Cerchiamo la regola La regola Esempi
Esercizi proposti S. AQUINO IPSIA PITTONI
30
Somma per differenza: significato algebrico
(a+b) (a-b) = = a2 - ab + ab - b2 = = a2 - b2 S. AQUINO IPSIA PITTONI
31
Somma per differenza: la regola
( a + b ) ( a - b ) = a 2 - b 2 Il prodotto della somma di due termini per la loro differenza è uguale al quadrato del primo termine meno il quadrato del secondo termine S. AQUINO IPSIA PITTONI
32
Somma per differenza: esempi
(2a+b) (2a+b) = (2a)2 - (b)2 = 4a2 - b2 (2a - 5b) (2a + 5b) = (2a)2 - (5b)2 = 4a2 - 25b2 (3a+2b) (3a-2b) = (3a)2 - (2b)2 = 9a2 - 4b2 (-a +2b) (-a - 2b) = (-3a)2 - (2b)2 = 9a b2 (4a + b) (- 4a + b) = (b)2 - (4a)2 = b a2 (-3b+2a) (+3b+2a) = (2a)2 - (3b)2 = 4a2 - 9b2 S. AQUINO IPSIA PITTONI
33
Somma per differenza: esercizi
(2a + 7)(2a - 7)= (3a - 4b)(3a+ 4b) = (-2x - 3y)(-2x+3y) = (a2 + 3b)(a2 - 3b) = (5a - 3b)(5a+ 3b) = (5a2+2b2)(5a2 -2b2) = (-3a3+2b2)(-3a3-2b2) = (2a + 3b)( -2a + 3b) = (7xy - 2x)( -7xy - 2x) = 4a 9a2 - 16b2 4x2 - 9y2 a4 - 9b2 25a2 - 9b2 25a4 - 4b4 9a6 - 4b4 9b2 - 4a2 4x x2y2 S. AQUINO IPSIA PITTONI
34
Somma per differenza: esercizi
[(a+b) - 1] [(a+b) +1] = (a+b)2 - 1 S. AQUINO IPSIA PITTONI
35
Altri Prodotti Notevoli
Somma di cubi Differenza di cubi La regola Esempi Esercizi proposti S. AQUINO IPSIA PITTONI
36
Somma di Cubi: significato algebrico
(a+b) (a2 - ab + b2 ) = = a3 - a2b + ab2 + a2b- ab2 + b3 = = a3 + b3 S. AQUINO IPSIA PITTONI
37
Differenza di Cubi: significato algebrico
(a - b) (a2 + ab + b2 ) = = a3 + a2b + ab2 - a2b- ab2 - b3 = = a3 - b3 S. AQUINO IPSIA PITTONI
38
Somma o differenza di cubi: la regola
(a+b)(a2 - ab + b2 ) = a3 + b3 Il prodotto della somma di due termini per il trinomio formato dal quadrato dei due termini e dalla differenza del loro prodotto è uguale al cubo del primo termine più il cubo del secondo termine (a - b)(a2 + ab + b2 ) = a3 - b3 Il prodotto della differenza di due termini per il trinomio formato dal quadrato dei due termini e dalla somma del loro prodotto è uguale al cubo del primo termine meno il cubo del secondo termine S. AQUINO IPSIA PITTONI
39
Somma o Differenza di Cubi: esempi
(2a + b)(4a2 - 2ab + b2) = (2a)3 + (b)3 = 8a3 + b3 (2a - b)(4a2 + 2ab + b2) = (2a)3 - (b)3 = 8a3 - b3 (3a+2b)(9a2- 6ab +4b2)= (3a)3 + (2b)3 = 27a3 + 8b3 (3a - 2b)(9a2+ 6ab +4b2)= (3a)3 - (2b)3 = 27a3 - 8b3 S. AQUINO IPSIA PITTONI
40
Somma o Differenza di Cubi: esercizi
(2a + 7)(4a2 - 14ab + 49)= (3a - 4b)(9a2+12ab+16b2) = (2x - 3y)(4x2 + 6xy + 9y2) = (a2 + 3b)(a4 +9b2 - 3a2b ) = (5a - 3b)(25a2+15ab+9b2) = (x2 + 2y2)(x4 - 2x2y2 + 4y4) = (3a3+ b2)(9a6- 3a3b2 + b4) = (2a + 3b)( 4a2 - 6ab+9b2) = (x - 2y)( x2 +2xy + 4y2) = 8a 27a3 - 64b3 8x y3 a b3 125a b3 x6 + 8y6 27a9 + b6 8a2 + 27b2 x3 - 8y3 S. AQUINO IPSIA PITTONI
41
SCOMPOSIZIONI QUI DI SEGUITO TROVERAI ALCUNE DOMANDE PER MISURARE LE TUE CONOSCENZE. IN CASO DI RISPOSTA ERRATA TI VERRA’ FORNITA LA CORREZIONE ED UN RIPASSO DELLA TEORIA. S. AQUINO IPSIA PITTONI
42
DOMANDA n.1 Ecco quattro semplici polinomi: soltanto tre di essi risultano fattorizzabili in base alla proprietà distributiva della moltiplicazione rispetto all’addizione. Quali? 1, 2 e 3 1, 3 e 4 1, 2 e 4 2, 3 e 4 S. AQUINO IPSIA PITTONI
43
ATTENTO! LA TUA RISPOSTA NON E’ CORRETTA!
La proprietà distributiva della moltiplicazione rispetto all’addizione è così sintetizzabile: a(b+c) = ab+ac o viceversa: ab+ac = a(b+c). Quindi, se i termini di un polinomio sono tutti divisibili per uno stesso fattore, quest’ultimo può essere messo in evidenza scrivendolo fuori da una parentesi; all’interno della parentesi andrà scritto un nuovo polinomio ottenuto dal precedente dividendo ogni suo termine per il fattore evidenziato: S. AQUINO IPSIA PITTONI
44
BRAVO!!! LA TUA RISPOSTA E’ CORRETTA! VAI ALLA DOMANDA SEGUENTE
S. AQUINO IPSIA PITTONI
45
TABELLA DI SCOMPOSIZIONI
Prof.Adelaide Boccia S. AQUINO IPSIA PITTONI
46
SE HO Due termini Tre termini Quattro termini Cinque termini
Sei termini Prof.Adelaide Boccia S. AQUINO IPSIA PITTONI
47
DUE TERMINI S. AQUINO IPSIA PITTONI
48
TRE TERMINI Prof. Adelaide Boccia S. AQUINO IPSIA PITTONI
49
QUATTRO TERMINI S. AQUINO IPSIA PITTONI
50
CINQUE TERMINI S. AQUINO IPSIA PITTONI
51
SEI TERMINI S. AQUINO IPSIA PITTONI
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.