Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
1
Vettori dello spazio bidimensionale (R 2)
Dato un sistema di riferimento sul piano di due assi cartesiani ortogonali y 3 2 1 x 1 2 3 -3 -2 -1 -1 -2 -3
2
Vettori dello spazio bidimensionale (R 2)
Dato un sistema di riferimento sul piano di due assi cartesiani ortogonali y 3 2 1 x 1 2 3 -3 -2 -1 -1 Ad ogni segmento orientato si può associare una coppia ordinata di numeri reali (x;y), data dalle coordinate dell’estremo del segmento orientato -2 -3
3
Vettori dello spazio bidimensionale (R 2)
3 P (3; 2) 2 v 1 1 2 3 -3 -2 -1 -1 Ogni vettore nel piano si può quindi rappresentare come coppia ordinata di numeri reali (rappresentazione algebrica o analitica) -2 -3
4
Vettori dello spazio bidimensionale (R 2)
3 u =(-1;-3) P (3; 2) 2 v 1 j i 1 2 3 -3 -2 -1 -1 u Ogni vettore nel piano si può quindi rappresentare come coppia ordinata di numeri reali (rappresentazione algebrica o analitica) -2 -3 Q (-1; -3)
5
Vettori dello spazio bidimensionale (R 2)
w = (2;3) 3 T (2; 3) r =(1;-3) 2 i = (1;0) w 1 i 3 -3 -2 -1 1 2 -1 r -2 -3 S (1; -3)
6
Vettori dello spazio bidimensionale (R 2)
3 u =(1;-3) P (3; 2) i = (1;0) 2 j = (0;1) v 1 j i -1 1 2 3 -3 -2 -1 u -2 0 = (0;0) -3 Q (1; -3)
7
Vettori dello spazio tridimensionale (R 3)
x y z I vettori v = (3;4;4) Ogni vettore nello spazio tridimensionale si può rappresentare come terna ordinata di numeri reali (rappresentazione algebrica/analitica) 0 = (0;0;0) 3 i = (1;0;0) 2 j = (0;1:0) 1 k = (0;0:1) k j 3 -3 -2 -1 i 1 2 -1 -2 3 -3
8
Vettori dello spazio tridimensionale (R 3)
0 = (0;0;0) I vettori di modulo unitario (lunghezza = 1) si dicono versori 3 i = (1;0;0) 2 j = (0;1:0) V 1 k = (0;0:1) k j -3 3 -2 -1 1 2 i y -1 -2 I versori lungo i tre assi coordinati i=(1;0;0), j= (0;1;0), k= (0;0;1) Sono i versori principali 3 x -3
9
Somma e differenza di vettori
In rappresentazione geometrica la somma di due vettori degli spazi R2 e R3 è data dalla “regola del parallelogramma”: u u + v v
10
Somma e differenza di vettori
In rappresentazione geometrica la differenza di due vettori si ottiene come indicato in figura: (“La differenza di due vettori è uguale alla somma del primo con l’opposto del secondo” ) (I due segmenti orientati gialli sono equipollenti e quindi rappresentano lo stesso vettore differenza u – v) u - v u v
11
Somma e differenza di vettori
In rappresentazione algebrica la somma (o la differenza) di due vettori (di coordinate date) è un terzo vettore che ha come coordinate la somma (o la differenza) delle coordinate corrispondenti. Es,: dati: u = (1; -3; 2); v = (2; 0; 5) u + v = (3; -3; 7) ; u - v = (-1; -3; -3)
12
Scomposizione lungo gli assi cartesiani
Si tratta di un caso particolare di scomposizione, lungo le direzioni ortogonali degli assi cartesiani x y v vy ĵ vxî
13
Vettori nello spazio z vzk ^ v θ vy ĵ y
La direzione di v risulta definita dagli angoli θ e φ vxî φ x
14
Prodotto scalare Dati due vettori a e b, il prodotto scalare tra a e b è una grandezza scalare definita nel modo seguente: a b α Il prodotto scalare tra a e b è un numero che è pari al prodotto del modulo di a per la componente di b lungo la direzione di a acosα Ovviamente il prodotto scalare a · b è anche pari al prodotto del modulo di b per la componente di a lungo la direzione di b bcosα
15
Prodotto scalare in componenti cartesiane
Tenendo conto del fatto che i versori degli assi cartesiani sono a due a due perpendicolari fra loro, si ha che: Di conseguenza, esprimendo i vettori in termini delle loro componenti cartesiane, si ha: Caso particolare: b = a
16
Prodotto vettoriale Dati due vettori a e b, il prodotto vettoriale c = a × b è un vettore che gode delle proprietà seguenti: il modulo di c è dato da absinθ, dove θ è l’angolo minore di 180° compreso tra a e b la direzione di c è perpendicolare al piano individuato da a e b il verso di c è calcolato applicando la regola della mano destra a b c θ
17
La regola della mano destra
b a × b Prima formulazione Si dispone il pollice lungo il primo vettore Si dispone l’indice lungo il secondo vettore Il verso del medio individua il verso del prodotto vettoriale Seconda formulazione Si chiude a pugno la mano destra mantenendo sollevato il pollice Le dita chiuse a pugno devono indicare il verso in cui il primo vettore deve ruotare per sovrapporsi al secondo in modo che l’angolo θ di rotazione sia minore di 180° Il verso del pollice individua il verso del prodotto vettoriale a b a × b
18
Proprietà del prodotto vettoriale
Il modulo del prodotto vettoriale è pari all’area del parallelogramma individuato dai due vettori Il prodotto vettoriale è nullo se i due vettori sono paralleli (θ=0) Il prodotto vettoriale gode della proprietà anticommutativa: a b θ
19
Prodotto vettoriale in componenti cartesiane
Tenendo conto che i versori degli assi cartesiani sono a due a due perpendicolari fra loro, ed applicando la regola della mano destra, si hanno le seguenti relazioni: Pertanto, esprimendo i vettori in termini delle loro componenti cartesiane, si ha che:
20
Posizione di un punto nello spazio
Una volta fissato un sistema di riferimento nello spazio, la posizione di un qualsiasi punto P dello spazio è individuata tramite il vettore posizione, ossia il vettore r che congiunge l’origine con il punto P x O y P r yĵ xî In coordinate cartesiane, se P(x,y) il vettore posizione è dato da:
21
Posizione in coordinate polari
La posizione di P è sempre data dal vettore posizione r Il vettore posizione r è ora espresso in termini dei versori ûr e ûφ ûr ûφ asse polare O P φ r ûr = versore nella direzione radiale ûφ = versore perpendicolare a ûr nella direzione delle φ crescenti I versori ûr e ûφ dipendono dalla posizione del punto P !!!
22
Vettori dello spazio n-dimensionale (R n)
Oltre le tre dimensioni non è possibile nessuna rappresentazione geometrica dei vettori, ma solo la rappresentazione algebrica ( o analitica): Un vettore è rappresentato da una successione ordinata di n numeri (n-pla ordinata) v = (x1; x2; x3; ….; xn)
23
Vettori dello spazio n-dimensionale (R n)
I vettori Esempi: u = (1; -3; 2.5; 2) è un vettore dello spazio R 4 v = (2; 0; 5; -2; 8) è un vettore dello spazio R 5 w = (1; -3; 2.5; 2; 0; 1; -5)) è un vettore dello spazio R 7
24
Vettori dello spazio n-dimensionale (R n)
I vettori La somma di due vettori nello spazio R n è un vettore che ha per coordinate la somma delle coordinate corrispondenti (analogamente per la differenza). Se: u = (x1; x2; x3; …xn) e v = (y1; y2; y3; …yn) Allora: u + v = (x1+y1; x2+y2; x3+y3; …; xn+yn) Es,: u = (1; -3; 2.5; 2); v = (2; 0; 5; -2) u + v = (3; -3; 7.5; 0)
25
Modulo di un vettore v = (x; y; z) v=
Dato il vettore v, il suo modulo v è la lunghezza, in valore assoluto, del segmento orientato che rappresenta il vettore (fino a tre dimensioni - spazio R 3) Se un vettore è dato mediante le sue coordinate: v = (x; y; z) v= L’espressione sotto radice (x2 + y2 + z2) è anche detta norma del vettore v. Come si vedrà più avanti, essa è uguale al prodotto scalare del vettore per se stesso, v v = v2 E, in generale, per un vettore dello spazio R n (vettore a n coordinate), il suo modulo è dato da: v = (x1; x2; x3; … ; xn) v=
26
Modulo di un vettore v= y v x
Dato il vettore v sul piano (spazio R 2 ), definito analiticamente da due coordinate, v = (x;y), il suo modulo v è dato da: v= y v x Esso deriva dall’applicazione del Teorema di Pitagora nella rappresentazione geometrica, come facilmente si desume dalla figura
27
Modulo di un vettore z v = (x; y; z) V v= y x
La precedente relazione per il modulo di un vettore dello spazio R 3 (vettore a tre coordinate): v = (x; y; z) v= deriva dal Teorema di Pitagora generalizzato nello spazio. z Si generalizza ulteriormente per gli spazi astratti R n a più di tre dimensioni, portando alla già citata relazione generale: v = (x1; x2; x3; … ; xn) v=
28
Distanza tra due punti u = (x1; x2; x3) v = (y1; y2; y3) u - v=
Dati due vettori: u = (x1; x2; x3) v = (y1; y2; y3) Il modulo della differenza tra i due vettori u e v (in R 2 o R 3 u - v è dato da: u - v= dove il terzo addendo (z1-z2)2 è nullo nel caso che i vettori siano di R2 (vettori del piano x, y).
29
Distanza tra due punti u = (x1; x2; x3); v = (y1; y2; y3) u u - v v
Dati due vettori: u = (x1; x2; x3); v = (y1; y2; y3) se consideriamo i loro estremi P1 e P2 (le cui coordinate sono quelle indicate), il modulo della differenza dei due vettori (vedi rappresentazione geometrica – dia n° 23 -) corrisponde alla distanza (numero assoluto!) tra i punti estremi P1 e P2. Nell’ esempio in figura abbiamo: P1 = (x1; y1); P2= (x1; y1) La loro distanza, d(P1P2) è: d(P1P2) = P1 y1 u u - v x2 x1 v y2 P2
30
Prodotto di un numero per un vettore
PRODOTTI Prodotto di un numero per un vettore Per qualsiasi insieme di vettori si definisce il prodotto di un numero (reale) c per un vettore v : u = c v Il risultato di tale moltiplicazione è un vettore (u) che ha: stessa direzione di v (u parallelo a v) verso concorde o discorde a quello di v, a seconda che c sia rispettivamente positivo o negativo -modulo di u uguale a modulo di c per modulo di v u= cv
31
Prodotto di un numero per un vettore
PRODOTTI Prodotto di un numero per un vettore Es.: u = 3 v u v v u u = -2 v
32
Prodotto di un numero per un vettore
PRODOTTI Prodotto di un numero per un vettore In rappresentazione analitica (vettori rappres. mediante le coordinate), il prodotto di c per un vettore v si ottiene moltiplicando ciascuna coordinata per c. Es.: sia dato: v = (2; -3; 1) u = 3 v = 3 (2; -3; 1) = (6; -9; 3) w = -2 v = -2 (2; -3; 1) = (-4; 6; -2)
33
Prodotto di un numero per un vettore
PRODOTTI Prodotto di un numero per un vettore Quindi si può dare un criterio di parallelismo tra due vettori: Due vettori u e v (non nulli) sono paralleli (o proporzionali) se e solo se uno di essi si può ottenere dall’altro moltiplicandolo per un opportuno numero c, cioè se le coordinate dei due vettori sono proporzionali Ovvero: u || v se esiste un numero c tale che v = cu Es.: u = (2; -1; 5) e v = (-8; -4; -20) sono paralleli, poiché v = -4u Le coordinate di u e v risultano proporzionali (è costante il rapporto tra le coordinate corrispondenti: 2/(-8) = -1/(-4) = 5/(-20) = -4
34
Prodotto scalare o interno di due vettori
PRODOTTI Prodotto scalare o interno di due vettori Esso non è un vettore, ma un numero (o scalare) In rappresentazione geometrica: u v = uvcos v Prodotto dei moduli (lunghezze dei vettori) per il coseno dell’angolo tra i vettori ovvero: modulo di un vettore per la proiezione dell’altro sulla direzione del primo u
35
Prodotto scalare o interno di due vettori
PRODOTTI Prodotto scalare o interno di due vettori Esempio 1: v= 2; u= 2.2; = 30° cos = 3/2 u v = uvcos = 2 2.2 3/2 3.81 u v 30°
36
Prodotto scalare o interno di due vettori
PRODOTTI Prodotto scalare o interno di due vettori Esempio 2: v= 1; u= 2.2; = 120° cos = -1/2 u v = uvcos = 1 2.2 (-1/2) = -1.1 v 120° u
37
Prodotto scalare o interno di due vettori
PRODOTTI Prodotto scalare o interno di due vettori Esempio 3: v= 1; u= 2.2; = 90° cos = 0 u v = uvcos = 1 2.2 0 = 0 v 90° u
38
Prodotto scalare o interno di due vettori
PRODOTTI Prodotto scalare o interno di due vettori In rappresentazione algebrica: Il prodotto scalare si può ottenere se sono date le coordinate dei vettori : u = (x1; y1; z1) v = (x2; y2; z2) Il loro prodotto scalare è: u v = x1 x2 + y1 y2 + z1 z2 Es.: u = (3; -1; 4) ; v = (2; 5; -3) u v = 32 + (-1)5 + 4 (-3) = -11
39
Prodotto scalare o interno di due vettori
PRODOTTI Prodotto scalare o interno di due vettori In rappresentazione algebrica: Il prodotto scalare di due vettori nello spazio n-dimensionale R n (n coordinate): u = (x1; x2; x3; … ; xn) v = (y1; y2; y3; … ; yn ) Il loro prodotto scalare è: u v = Es.: u = (3; -1; 4; 0; 5) ; v = (2; 5; -3; 1; -2) u v = 32 + (-1)5 + 4 (-3) + 0 1+5 (-2)= -21
40
Prodotto scalare o interno di due vettori
PRODOTTI Prodotto scalare o interno di due vettori Attraverso il prodotto scalare possiamo dare la: Condizione di perpendicolarità tra due vettori : Due vettori (siano u e v) non nulli sono perpendicolari (o ortogonali) se e solo se Il loro prodotto scalare è nullo (uv=0) Es.: u = (3; -1; -1); v = (2; 5; 1) u v = 32 + (-1)5 + (-1) (1) = 0 ; i due vettori sono perpendicolari
41
Prodotto scalare o interno di due vettori
PRODOTTI Prodotto scalare o interno di due vettori Il modulo ( o norma) di un vettore di uno spazio R n (vettore a n coordinate): v = (x1; x2; x3; … ; xn) v= si può esprimere come la radice quadrata del prodotto scalare del vettore per se stesso (v x v = v2): v= (v x v)1/2 = (v2)1/2. Uno spazio vettoriale per il quale sia stata definita la norma dei suoi vettori si dice “normato”.
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.