Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
PubblicatoBianca Cozzi Modificato 9 anni fa
1
Metodi Quantitativi per Economia, Finanza e Management Lezione n°4
2
Misure di Tendenza Non Centrale
I Quartili dividono la sequenza ordinata dei dati in 4 segmenti contenenti lo stesso numero di valori 25% 25% 25% 25% Q1 Q2 Q3 Il primo quartile, Q1, è il valore per il quale 25% delle osservazioni sono minori e 75% sono maggiori di esso Q2 coincide con la mediana (50% sono minori, 50% sono maggiori) Solo 25% delle osservazioni sono maggiori del terzo quartile
3
Differenza Interquartile
Box Plot Mediana (Q2) X X Q1 Q3 massimo minimo 25% % % % Differenza Interquartile 57 – 30 = 27 OUTLIERS: Q1 - 1,5 * Differenza interquartile Q3 + 1,5 * Differenza interquartile
4
Misure di Variabilità Variabilità
Campo di Variazione Differenza Interquartile Varianza Scarto Quadratico Medio Coefficiente di Variazione Le misure di variabilità forniscono informazioni sulla dispersione o variabilità dei valori. Stesso centro, diversa variabilità
5
Campo di variazione = Xmassimo – Xminimo
La più semplice misura di variabilità Differenza tra il massimo e il minimo dei valori osservati: Campo di variazione = Xmassimo – Xminimo Esempio: Campo di Variazione = = 13
6
Campo di Variazione Ignora il modo in cui i dati sono distribuiti Sensibile agli outlier Campo di Var. = = 5 Campo di Var. = = 5 1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,5 Campo di Var. = = 4 1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,120 Campo di Var = = 119
7
Differenza Interquartile
Possiamo eliminare il problema degli outlier usando la differenza interquartile Elimina i valori osservati più alti e più bassi e calcola il campo di variazione del 50% centrale dei dati Differenza Interquartile = 3o quartile – 1o quartile IQR = Q3 – Q1
8
Varianza Media dei quadrati delle differenze fra ciascuna osservazione e la media Varianza della Popolazione: dove = media della popolazione N = dimensione della popolazione xi = iimo valore della variabile X
9
Scarto Quadratico Medio
Misura di variabilità comunemente usata Mostra la variabilità rispetto alla media Ha la stessa unità di misura dei dati originali Scarto Quadratico Medio della Popolazione:
10
Scarto Quadratico Medio
Scarto quadratico medio piccolo Scarto quadratico medio grande
11
Scarto Quadratico Medio
Dati A Media = 15.5 s = 3.338 Dati B Media = 15.5 s = 0.926 Dati C Media = 15.5 s = 4.570
12
Scarto Quadratico Medio
Viene calcolato usando tutti i valori nel set di dati Valori lontani dalla media hanno più peso (poichè si usa il quadrato delle deviazioni dalla media) Le stesse considerazioni valgono anche per il calcolo della Varianza
13
Coefficiente di Variazione
Misura la variabilità relativa Sempre in percentuale (%) Mostra la variabilità relativa rispetto alla media Può essere usato per confrontare due o più set di dati misurati con unità di misura diversa
14
Coefficiente di Variazione
Azione A: Prezzo medio scorso anno = $50 Scarto Quadratico Medio = $5 Azione B: Prezzo medio scorso anno = $100 Entrambe le azioni hanno lo stesso scarto quadratico medio, ma l’azione B è meno variabile rispetto al suo prezzo
15
Forma della Distribuzione
La forma della distribuzione si dice simmetrica se le osservazioni sono bilanciate, o distribuite in modo approssimativamente regolare attorno al centro.
16
Forma della Distribuzione
La forma della distribuzione è detta asimmetrica se le osservazioni non sono distribuite in modo simmetrico rispetto al centro. Una distribuzione con asimmetria positiva (obliqua a destra) ha una coda che si estende a destra, nella direzione dei valori positivi. Una distribuzione con asimmetria negativa (obliqua a sinistra) ha una coda che si estende a sinistra, nella direzione dei valori negativi.
17
Misure di Forma della Distribuzione
Descrive come i dati sono distribuiti Misure della forma Simmetrica o asimmetrica Obliqua a sinistra Simmetrica Obliqua a destra Media < Mediana Media = Mediana Mediana < Media
18
Misure di Forma della Distribuzione
Skewness: indice che informa circa il grado di simmetria o asimmetria di una distribuzione. γ=0 ditribuzione simmetrica; γ<0 asimmetria negativa (mediana>media); γ>0 asimmetria positiva (mediana<media). Kurtosis: indice che permette di verificare se i dati seguono una distribuzione di tipo Normale (simmetrica). β=3 se la distribuzione è “Normale”; β<3 se la distribuzione è iponormale (rispetto alla distribuzione di una Normale ha densità di frequenza minore per valori molto distanti dalla media); β>3 se la distribuzione è ipernormale (rispetto alla distribuzione di una Normale ha densità di frequenza maggiore per i valori molto distanti dalla media).
19
IMPORTO NETTO UNITARIO
Basic Statistical Measures Location Variability Mean Std Deviation Median Variance 6563 Mode 0.0000 Range Interquartile Range
20
IMPORTO NETTO UNITARIO
21
IMPORTO NETTO UNITARIO
22
IMPORTO NETTO UNITARIO
Basic Statistical Measures Location Variability Mean Std Deviation Median Variance 4134 Mode Range Interquartile Range
23
Analisi di Concentrazione
Per caratteri quantitativi trasferibili Equidistribuzione: Max concentrazione: 1. Ordinare le osservazioni 2. Calcolare le quantità:
24
20% 50% 60% 90% Analisi di Concentrazione
CURVA DI CONCENTRAZIONE REDD. >=0 QI 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 FI 20% 50% 60% 90% 1
25
20% 40% Analisi di Concentrazione CURVA DI CONCENTRAZIONE REDD. < 0
QI 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 FI 20% 40% 1
26
Statistica descrittiva bivariata
Indaga la relazione tra due variabili misurate. Si distingue rispetto alla tipologia delle variabili indagate: var. qualitative/quantitative discrete: tavole di contingenza (o a doppia entrata) var. quantitative: analisi di correlazione lineare una var. qualitativa e una quantitativa: confronto tra le medie
27
Tavole di contingenza Sono tabelle a doppia entrata; i valori riportati all’interno della tabella sono le frequenze congiunte assolute, e la loro somma è pari al totale dei casi osservati. Dalla tabella si possono ricavare inoltre le distribuzioni marginali, sommando per riga e per colonna le frequenze congiunte; le frequenze relative congiunte, pari al rapporto tra le frequenze assolute congiunte e il totale dei casi osservati.
28
Tavole di contingenza Dalle tabelle di contingenza si possono ricavare ulteriori distribuzioni unidimensionali : Frequenze subordinate ovvero la frequenza di osservare il carattere x dato il carattere y e viceversa. Formalmente: P y|x (xi,yj) = P (xi,yj) / P x(xi) P x|y (xi,yj) = P (xi,yj) / P y(yj) Indipendenza statistica se al variare di X le distribuzioni subordinate (Y|X)= xi sono tutte uguali tra loro,si può concludere che la distribuzione del carattere Y non dipende da X. Nel caso di indipendenza statistica, la frequenza relativa congiunta è pari al prodotto delle marginali corrispondenti P(xi,yj)=Px (xi)Py(yj) L’indipendenza stat. è un concetto simmetrico: se vale per X, vale anche per Y. Se si verifica, vuol dire che l’analisi bivariata di X (Y) non dà informazioni aggiuntive rispetto all’analisi univariata.
29
Tavole di contingenza Perfetta dipendenza unilaterale ad ogni valore di X corrisponde un solo valore di Y, ma non è detto che si verifichi il contrario. In generale, quando il numero di colonne (valori assunti dalla Y) è inferiore al numero di righe (valori assunti dalla X) non è mai possibile che X dipenda perfettamente da Y. Perfetta dipendenza bilaterale ad ogni valore di X corrisponde un solo valore di Y e viceversa; la perfetta dipendenza bilaterale si può avere allora solo per matrici quadrate.
30
χ²=N Σ Σ [P(xi,yj)-Px(xi) y(yj)] ²/ Px(xi) Py(yj)
Indici di connessione Nella realtà è difficile che si verifichi la condizione di indipendenza statistica. Pertanto è utile disporre di indici che misurino il grado di connessione tra le variabili. χ² (chi-quadrato) assume valore nullo se i fenomeni X e Y sono indipendenti. Risente del numero delle osservazioni effettuate quindi al crescere di N, l’indice tende a crescere. χ²=N Σ Σ [P(xi,yj)-Px(xi) y(yj)] ²/ Px(xi) Py(yj)
31
Indici di connessione Un indice più efficace (perchè relativo, e dunque non risente del numero di osservazioni) è l’indice di Cramer V, basato sul χ². assume valori compresi tra 0 e 1: 0 nel caso di indipendenza statistica, 1 nel caso di perfetta dipendenza almeno unilaterale e tende a crescere all’aumentare del grado di dipendenza delle variabili considerate.
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.