Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
PubblicatoTeofila Gori Modificato 9 anni fa
1
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6 Analisi Fattoriale: le ipotesi del modello e il metodo delle component principali
2
Percorso di Analisi
3
Factor Analysis
6
If the information is spread among many correlated variables: we may have several different problems. Apparent information; Miss- understanding; Difficulties in the interpretation phase; Robustness of the results; Efficiency of the estimates; Degrees of freedom; ….. Factor Analysis
7
Quando le variabili considerate sono numerose spesso risultano tra loro correlate => numerosità e correlazione tra variabili porta a difficoltà di analisi Perché sintetizzare? Se l’informazione è condivisa tra più variabili correlate tra loro, è ridondante utilizzarle tutte. La sintesi semplifica le analisi successive ma comporta una perdita di informazione, si deve evitare, di perdere informazioni rilevanti.
8
Analisi fattoriale Perché sintetizzare mediante l’impiego della tecnica? Se l’informazione è “dispersa” tra più variabili correlate tra loro, le singole variabili faticano da sole a spiegare il fenomeno oggetto di studio, mentre combinate tra loro risultano molto più esplicative. Esempio: l’attrattività di una città da cosa è data? Dalle caratteristiche del contesto, dalla struttura demografica della popolazione, dalla qualità della vita, dalla disponibilità di fattori quali capitale, forza lavoro, know-how, spazi, energia, materie prime, infrastrutture, ecc. I fattori latenti sono “concetti” che abbiamo in mente ma che non possiamo misurare direttamente.
9
Factor Analysis
11
Analisi fattoriale Quando le variabili considerate sono numerose spesso risultano tra loro correlate. Numerosità e correlazione tra variabili porta a difficoltà di analisi => ridurre il numero (semplificando l’analisi) evitando, però, di perdere informazioni rilevanti. L’Analisi Fattoriale è una tecnica statistica multivariata per l’analisi delle correlazioni esistenti tra variabili quantitative. A partire da una matrice di dati : X (nxp), con “n” osservazioni e “p” variabili originarie, consente di sintetizzare l’informazione in un set ridotto di variabili trasformate (i fattori latenti).
12
Analisi fattoriale Le ipotesi del Modello Fattoriale Variabili Quantitative x 1, x 2,......, x i,......... x p Info x i = Info condivisa + Info specifica Var x i = Communality + Var specifica x i = f(CF 1,....,CF k ) +UF i i = 1,........., p k << p CF i = Common Factor i UF i = Unique Factor i Corr (UF i, UF j ) = 0 per i ^= j Corr (CF i, CF j ) = 0 per i ^= j Corr (CF i, UF j ) = 0 per ogni i,j
13
Analisi fattoriale Factor Loadings & Factor Score Coefficients x i = l i1 CF 1 + l i2 CF 2 +.... + l ik CF k + UFi l i1, l i2,........,l ik factor loadings i = 1,........., psignificato fattori CF j = s j1 x 1 + s j2 x 2 +.............. + s jp x p s j1, s j2,........,s jp factor score coeff. j = 1,....., k << pcostruzione fattori
14
I fattori calcolati mediante il metodo delle CP sono combinazioni lineari delle variabili originarie Sono tra loro ortogonali (non correlate) Complessivamente spiegano la variabilità delle p variabili originarie Sono elencate in ordine decrescente rispetto alla variabilità spiegata Analisi fattoriale Metodo delle Componenti Principali CP j = s j1 x 1 + s j2 x 2 +.............. + s jp x p
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.