La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Definizione di algoritmo: Un algoritmo è un procedimento che risolve un determinato problema attraverso un numero finito di passi. Un problema risolvibile.

Presentazioni simili


Presentazione sul tema: "Definizione di algoritmo: Un algoritmo è un procedimento che risolve un determinato problema attraverso un numero finito di passi. Un problema risolvibile."— Transcript della presentazione:

1 Definizione di algoritmo: Un algoritmo è un procedimento che risolve un determinato problema attraverso un numero finito di passi. Un problema risolvibile mediante un algoritmo si dice computabile Un algoritmo è un procedimento che risolve un determinato problema attraverso un numero finito di passi. Un problema risolvibile mediante un algoritmo si dice computabile.

2 Tutti i tipi di algoritmo

3 Selection Sort: void selsort(int x[ ], int y) { int z=0; for (z=0;z<n;z++) { int y=0; for (y=z+1;y<n;y++) { if (x[y] < x[y]) { int t=x[y]; x[y]=x[z]; x[z]=t; } alla prima iterazione verrà selezionato l’elemento più piccolo dell’intero insieme e sarà scambiato con quello che occupa la prima posizione. Alla seconda iterazione è selezionato il secondo elemento più piccolo dell’insieme è viene scambiato con l’elemento che occupa la seconda posizione. Si ripete fino ad aver collocato nella posizione corretta tutti gli n elementi.

4 Inserction Sort: void inssort(int a[ ],int n) { int i=0,j=0; for (i=1;i<n;i++) { int x=a[i], s=1, d=i-1; while (s<=d) { int m=(s+d)/2; if (x<a[m]) d=m-1; else s=m+1; } for (j=i-1,j>=s;j--) a[j+1]=a[j]; a[s]=x; } Ad ogni iterazione, il vettore è costituito da una parte iniziale ordinata e da la parte rimanente che contiene i valori da ordinare. Per ogni valore ancora da inserire, viene fatta una ricerca binaria nella parte ordinata del vettore e vengono spostati in avanti tutti gli elementi per liberare una posizione Nella posizione liberata viene inserito il valore.

5 Bubble Sort: void bubbsort(int x[ ], int y) { bool scambio=true; int ultimo=y-1,i=0; while (scambio) { scambio=false; for (i=0;i<ultimo;i++) { if ( x[i]> x[i+1]) { int t= x[i]; x[i]=x[i+1]; x[i+1]=t; scambio=true; } ultimo --; } L’algoritmo BUBBLE SORT (ordinamento a bolle) so basa sull’idea di far emergere pian piano gli elementi più piccoli verso l’inizio dell’insieme da ordinare facendo sprofondare gli elementi maggiori verso il fondo: un po’ come le bollicine in un bicchiere di acqua gassata da qui il nome di ordinamento a bolle.

6 Quick Sort: void sort(int a[ ], int inizio, int fine) { int x, y, z; if (fine >inizio) { x = a [inizio]; y= inizio + 1; z= fine+1; while (y < z) { if (a [y] < x) y++; else { r--; swap(a[y], a[z]); } void swap(int & x, int & y) { int temp=x; x=y; y=temp; } Assunto un elemento come perno, si confrontano con esso gli altri elementi e si posizionano alla sua sinistra i minori e a destra i maggiori, senza tener conto del loro ordine. Dopo questo stadio si ha che il perno è nella sua posizione definitiva. Successivamente si procede in modo ricorsivo all'ordinamento parziale delle sottosequenze di elementi rimasti non ordinati, fino al loro esaurimento.

7 Merge Sort: void mersort (int x[ ], int sinistra, int centro, int destra) int i = sinistra, j=centro+ 1,k=0; int y[ ]; while ((i <= centro) && (j <= destra)) { if (x[i] <= x[j]){ y[k]=a[i]; i=i + 1; } else { y[k] = x[j]; j=j + 1; } k=k + 1; } for (k =left ;k<right;k++) { a[k] = b[k - left]; } L'insieme di elementi viene diviso in 2 metà. Se l'insieme è composto da un numero dispari di elementi, viene diviso in 2 sottogruppi dei quali il primo ha un elemento in meno del secondo. Supponendo di avere due sequenze già ordinate. Per unirle, mergesort estrae ripetutamente il minimo delle due sequenze in ingresso e lo pone in una sequenza in uscita. void mergesort (int[] a, int left, int right) { int center; if (left < right) { center = (left + right) / 2; mergesort(a, left, center); mergesort(a, center+1, right); merge(a, left, center, right); }

8 void HeapSort(int a[ ], int n){ int i; int lh = n; Costruisci_Heap(a, n); for(i = n-1; i > 0; i--){ temp = a[i]; a[i] = a[0]; a[0] = temp; lh--; Rendi_Heap(a, n, lh, 0); } } void 2_Heap(t_id_tab a[], int n){ int i; for(i = n/2 - 1; i >= 0; i--) 1 Heap(a, n, lh, i); Heap Sort: void 1_Heap(t_id_tab a[], int n, int lh, int i){ int s, d, max; s = 2*i + 1; d = 2*i + 2; if ((s a[i])) max = s; Else max = i; if ((d a[max].chiave)) max = d; if (max != i){ temp = a[i]; a[i] = a[max]; a[max] = temp; 1_Heap(a, n, lh, max);

9 Counting Sort: Per ogni elemento x dell'insieme da ordinare si determinano quanti elementi sono minori di x, si usa questa informazione per assegnare ad x la sua posizione finale nel vettore ordinato. Se, ad esempio, vi sono 8 elementi minori di x, allora x andrà messo nella posizione 9 bisogna fare attenzione al caso in cui vi siano elementi coincidenti. In questo caso infatti non vogliamo assegnare a tutti la stessa posizione. void counting_sort(int* A, int Alen, int* B, int k){ int i; int C[k]; for(i=0; i<k; i++) C[i] = 0; int j; for(j=0; j<Alen; j++) C[A[j]] = C[A[j]]+1; for(i=1; i<k; i++) C[i] = C[i]+C[i-1]; for (j=Alen-1; j>=0; j--){ B[C[A[j]]-1] = A[j]; C[A[j]] = C[A[j]]-1; }

10 Bucket Sort: Bucket sort suppone che l’input sia generato da un processo casuale che distribuisce gli elementi uniformemente nell’intervallo [0, 1[. Il concetto che sta alla base dell’algoritmo è quello di dividere l’intervallo [0, 1[ in n sottointervalli della stessa dimensione, detti bucket, nei quali vengono distribuiti gli n valori di input. A questo scopo lo pseudocodice che definisce l’algoritmo suppone che l’input sia un array A di n elementi e richiede un array ausiliario B[0...n−1] di liste concatenate (bucket). L’algoritmo procede semplicemente ordinando i valori in ogni bucket tramite un ordinamento di tipo insertion sort. L’output viene infine prodotto concatenando in ordine i vari bucket in un array. #include void bucketSort(int array[ ], int n) { int i, j; int count[n]; for(i=0; i 0; (count[i])--) { array[j++] = i; }}} int main() { int array[] = {1,3,4,6,4,2,9,1,2,9}; int n = 10; int i; for (i = 0;i < n;i++) { printf("%d ", array[i]); } printf("\n"); bucketSort(array, n); for (i = 0;i < n;i++) { printf("%d ", array[i]); } printf("\n"); return 0;


Scaricare ppt "Definizione di algoritmo: Un algoritmo è un procedimento che risolve un determinato problema attraverso un numero finito di passi. Un problema risolvibile."

Presentazioni simili


Annunci Google