Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
PubblicatoGloria Caputo Modificato 9 anni fa
1
© 1999 di V.M. or J.H. 1 2.1 Contratti Futures Lezione 2
2
© 1999 di V.M. or J.H. 2 2.2 Contratti Futures l Simili ai forwards: acquistare vendere – i futures sono «accordi» per acquistare o vendere un’«attività» ad una «certa data futura», ad un «certo prezzo» (il prezzo futures) l Diversi dai forwards: – i futures sono trattati in «borsa»
3
© 1999 di V.M. or J.H. 3 2.3 Contratti Futures l Specificazione del contratto da parte della Borsa (emittente): – «cosa» si può consegnare (sottostante) – «dove» si può consegnare (luogo) – «quando» si può consegnare (data) – «quanto» si deve consegnare (dimensione) – limiti di prezzo (limit up, limiti down) e di posizione – depositi a garanzia: initial margin, maintenance margin
4
© 1999 di V.M. or J.H. 4 2.4 Un Contratto Futures l Si supponga che il 3 giugno 1996 venga assunta alla New York Commodity Exchange (COMEX) una posizione lunga su 2 contratti futures sull’oro con scadenza a dicembre l La dimensione del contratto è di 100 once l Il prezzo futures a cui si entra nel contratto è di $400 l Il deposito di garanzia è di $2.000 per contratto ($4.000 in totale) initial margin l Il margine di mantenimento è di $1.500 per contratto ($3.000 in totale) maintenance margin
5
© 1999 di V.M. or J.H. 5 2.5 Marking to Market (mtm) l Tavola 2.1 p. 22 (possibili risultati) ———————————————————————— Profitto Profitto Saldo Prezzo (Perdita)(Perdita)DepositoMargin Data FuturesGiorn. Cumul. GaranziaCall $/oz. 2x100$/oz ———————————————————————— 400,004.000 3 giu. 96397,00(600)(600)3.400 -.................. 11 giu. 96393,30(420)(1.340)2.660 + 1.340 = 4.000.................. 17 giu. 96387,00(1.140)(2.600)2.740 + 1.260 = 4.000.................. 24 giu. 96392,30260(1.540)5.060 - ———————————————————————— < 3000 1500x2
6
© 1999 di V.M. or J.H. 6 2.6 Altri «Punti Fondamentali» l I futures vengono «liquidati giornalmente» l La «chiusura» di una posizione su un contratto futures comporta la stipula di un contratto di «segno opposto» l La maggior parte dei contratti futures viene chiusa «prima» della scadenza l Disponibili per un’ampia gamma di sottostanti
7
© 1999 di V.M. or J.H. 7 2.7 «Regolamentazione» dei Futures l La regolamentazione si propone di proteggere l’interesse pubblico l Le autorità di vigilanza cercano di prevenire le «pratiche operative non corrette» sia da parte degli «individui» che operano sul floor sia da parte di «gruppi» esterni
8
© 1999 di V.M. or J.H. 8 2.8 Terminologia l Open interest: il numero complessivo dei contratti in essere lunghicorti – è uguale al numero dei contratti lunghi o al numero dei contratti corti l Prezzo di liquidazione: il prezzo rilevato immediatamente prima del segnale che determina la fine delle contrattazioni – è usato per la procedura di marking to market l Volume degli scambi: il numero dei contratti stipulati in un giorno l «Day trade» operazione che verrà chiusa nello stesso giorno di stipula l «Spread transaction» lungo di Forward che scade in t e corto di Forward che scade in T con T t
9
© 1999 di V.M. or J.H. 9 2.9 Prezzi Futures e Prezzi Forward (dimostrazione) uguali l Di solito «si assume» che i «prezzi» forward e i prezzi futures siano uguali
10
© 1999 di V.M. or J.H. 10 2.10 Prezzi Futures e Prezzi Forward (dimostrazione) l Sommando i guadagni e le perdite:
11
© 1999 di V.M. or J.H. 11 2.11 Prezzi Futures e Prezzi Forward (dimostrazione) futures 0 l lungo 0 l lungo -F 0 ----------------------------------- saldo -F 0 forward 0 lungo e n 0 l depo -G 0 ----------------------------------- saldo -G 0 T --------------------------------- T ---------------------------------
12
© 1999 di V.M. or J.H. 12 2.12 Prezzi Futures e Prezzi Forward Oltre a lungo su futures per e i , i = 1,…,n l andiamo lunghi su cash per F 0 : in sintesi: investo F 0 e ricevo in T Oppure, lungo di e n forward l e lunghi su cash per G 0 : G 0 equivale a F 0 sse G 0 = F 0 dato che a scadenza pagano S t e n , a condizione che
13
© 1999 di V.M. or J.H. 13 2.13 Prezzi Futures e Prezzi Forward –Tuttavia, i prezzi sono leggermente diversi quando i «tassi d’interesse» sono «incerti»: positiva –se c’è una forte «correlazione» positiva tra i tassi d’interesse e l’attività sottostante, il prezzo futures è un po’ più alto del prezzo forward (se sale S, il margine è reinvestito a un tasso più alto, mentre le perdite sono finanziate a un tasso più basso) negativa –se c’è una forte «correlazione» negativa tra i tassi d’interesse e l’attività sottostante, il prezzo forward è un po’ più alto del prezzo futures (viceversa)
14
© 1999 di V.M. or J.H. 14 2.14 Indici Azionari l Gli indici azionari possono essere considerati alla stregua di beni d’investimento che offrono un «dividend yield continuo» l Pertanto, la relazione tra prezzo futures e prezzo spot è F Se r q T t (3.12) p. 59 dove q è il dividend yield del «portafoglio» che è alla base dell’indice
15
© 1999 di V.M. or J.H. 15 2.15 Indici Azionari (continua) l Affinché la formula sia valida è «importante» che l’indice rappresenti un bene d’investimento l In altri termini, le variazioni dell’indice devono corrispondere alle variazioni del «valore di un portafoglio negoziabile» l L’indice Nikkei (¥) visto come un’attività in dollari ($) non rappresenta un bene d’investimento
16
© 1999 di V.M. or J.H. 16 2.16 Arbitraggi su Indici Se F Se r q T t l’arbitraggio comporta: acquisto – l’acquisto delle azioni sottostanti l’indice* vendita – la vendita del futures Se F Se r q T t l’arbitraggio comporta: vendita – la vendita delle azioni sottostanti l’indice* acquisto – l’acquisto del futures (*) in toto o con campione perfettamente correlato all’indice
17
© 1999 di V.M. or J.H. 17 2.17 Arbitraggi su Indici (continua) l Gli arbitraggi su indici comportano negoziazioni «simultanee» su futures e su diverse azioni l Molto spesso è il computer che suggerisce le operazioni da effettuare, da cui il termine computer trading non non l A volte (ad esempio in occasione del “Lunedì Nero”) le negoziazioni «simultanee» non sono possibili e la relazione teorica di «assenza di opportunità di arbitraggio» tra F e S può non valere
18
© 1999 di V.M. or J.H. 18 2.18 Tasso di Crescita dei Futures su Indici –q dividendi dell’indice –x eccedenza del rendimento dell’indice rispetto ad r þ rendimento complessivo: x + r þ guadagni in conto capitale: x + r - q –S prezzo spot dell’indice in –F prezzo futures su indice in þ Il tasso di crescita del prezzo futures è uguale all’eccedenza del tasso di rendimento dell’indice rispetto al tasso privo di rischio
19
© 1999 di V.M. or J.H. 19 2.19 «Coperture» mediante Futures su Indici –CAPM: –tasso di rendimento dell’indice è un’approssimazione di r m tasso di crescita futures r F è uguale ad r m - r f quindi: –copertura del portafoglio p: valore del sottostante sia uguale a -volte il valore del portafoglio
20
© 1999 di V.M. or J.H. 20 2.20 «Coperture» mediante Futures su Indici Il numero ottimale di contratti futures necessario per assicurare la «copertura» di un portafoglio è dato da dove: è il valore del portafoglio F è il valore dell’attività sottostante il futures I contratti futures possono anche essere usati per cambiare il di un portafoglio
21
© 1999 di V.M. or J.H. 21 2.21 Futures su «Valute» l Le «valute estere» sono «simili» a titoli che offrono un «dividend yield continuo» l Il «dividend yield continuo» è dato dal tasso d’interesse estero privo di rischio l Ne segue che F Se r r f T t (3.14) p. 63 dove r f è il tasso d’interesse estero privo di rischio
22
© 1999 di V.M. or J.H. 22 2.22 Futures su «Beni di Consumo» –Vale la relazione F (S U e r T t (3.20) p. 66 dove U è il valore attuale dei costi di «immagazzinamento» dell’attività sottostante –In alternativa, F Se r u T t (3.21) p. 66 dove u è il costo di «immagazzinamento» per unità di tempo espresso in proporzione al valore dell’attività sottostante
23
© 1999 di V.M. or J.H. 23 2.23 Costo di Trasferimento –Il costo di trasferimento, c, è uguale al «costo di immagazzinamento» più le «spese per interessi» meno il «reddito percepito» –Per i beni d’investimento vale la relazione F Se c T t (3.23) p. 67 –Per i beni di consumo vale la relazione F Se c T t –Il tasso di convenienza del bene di consumo, y, è definito in modo che F Se c y T t (3.24) p. 68
24
© 1999 di V.M. or J.H. 24 2.24 Prezzi Futures e Futuri Prezzi Spot –Si supponga che il «tasso di rendimento atteso» dagli investitori su una certa attività sia k –Si può investire ora (ossia a t 0) l’importo Fe r T t in titoli privi di rischio e simultaneamente assumere una posizione lunga su un contratto futures per scadenza T in modo da avere S T alla scadenza del contratto futures –Pertanto Fe r T t E S T e k T t da cui F E S T e r k T t (3.25) p. 70
25
© 1999 di V.M. or J.H. 25 2.25 Prezzi Futures e Futuri Prezzi Spot (continua) l Se l’attività – non ha rischio sistematico, si ha k r e F E(S T positivo – ha rischio sistematico positivo, si ha k r e F E(S T negativo – ha rischio sistematico negativo, si ha k r e F E(S T
26
© 1999 di V.M. or J.H. 26 2.26 Domande l Quando si stipula un «nuovo contratto» quali sono i possibili «effetti» sull’open interest? l Il volume degli scambi effettuati in una giornata «può» essere «maggiore» dell’open interest a fine giornata?
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.