Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
PubblicatoTommasa Vinci Modificato 9 anni fa
1
A.S.E.9.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 9 Algebra BOOLEANA a due valori Sistema matematico formaleSistema matematico formale Elementi, operazioni, postulatiElementi, operazioni, postulati Espressioni algebricheEspressioni algebriche Tabella di veritàTabella di verità Espressione algebrica vs. Tabella di veritàEspressione algebrica vs. Tabella di verità Mintermini e MaxterminiMintermini e Maxtermini Tabella di verità vs. Espressione algebricaTabella di verità vs. Espressione algebrica
2
A.S.E.9.2 Definizioni Elementi (2) [Algebra delle commutazioni]Elementi (2) [Algebra delle commutazioni] 0 (logico)1 (logico)0 (logico)1 (logico) FalsoVeroFalsoVero Livello logico BasoLivello logico AltoLivello logico BasoLivello logico Alto 0 V5 V0 V5 V Costanti Possono assumere due valoriCostanti Possono assumere due valori VariabiliPossono assumere due valoriVariabiliPossono assumere due valori
3
A.S.E.9.3 Definizione di “AND” OperazioneOperazione –AND o PRODOTTO LOGICO PostulatoPostulato –l’operazione AND è definita dalla tabella xy x y 00=0 01=0 10=0 11=1
4
A.S.E.9.4 Osservazioni 1. x y è uguale a “1” se e solo se x e y sono uguali a “1”, altrimenti x y è uguale a “0” 2.Si può estendere a “n” variabili: x 1 x 2 x n è uguale “1” se e solo se x 1 x 2 x n sono uguali a “1” La funzione AND corrisponde al concetto:La funzione AND corrisponde al concetto: un evento si verifica se e solo se tutte le condizioni sono verificate
5
A.S.E.9.5 Definizione di “OR” OperazioneOperazione –OR o SOMMA LOGICA PostulatoPostulato –l’operazione OR è definita dalla tabella xy x y 00=0 01=1 10=1 11=1
6
A.S.E.9.6 Osservazioni 1. x y è uguale a “0” se e solo se x e y sono uguali a “0”, altrimenti x y è uguale a “1” 2.Si può estendere a “n” variabili: x 1 x 2 x n è uguale “0” se e solo se x 1 x 2 x n sono uguali a “0” La funzione OR corrisponde al concetto:La funzione OR corrisponde al concetto: perché un evento si verifica è sufficiente che una sola condizioni sia verificata
7
A.S.E.9.7 Definizione di “NOT” OperazioneOperazione –NOT o Complemento Logico, o Negazione, o Inversione PostulatoPostulato –l’operazione NOT è definita dalla tabella x xxxx01 10
8
A.S.E.9.8 Osservazioni 1.se x è uguale a “0” allora x negato è uguale a “1”, se x è uguale a “1” allora x negato è uguale a “0” 2.Ovvero La funzione NOT corrisponde al concetto:La funzione NOT corrisponde al concetto: negazione della condizione
9
A.S.E.9.9 Funzione logica (o Boleana) Una funzioneUna funzione è una legge che fa corrispondere un valore logico (0 o 1) di u ad ogni combinazione di valori x 1,…..,x n. La funzione f è costituita da variabili logiche, costanti e le tre operazioni logiche fondamentaliLa funzione f è costituita da variabili logiche, costanti e le tre operazioni logiche fondamentali
10
A.S.E.9.10 Osservazioni Nelle funzioni logiche le parentesi indicano una gerarchia di esecuzione uguale a quella comunemente usata nelle espressioni aritmetiche noteNelle funzioni logiche le parentesi indicano una gerarchia di esecuzione uguale a quella comunemente usata nelle espressioni aritmetiche note Fra le operazioni logiche AND, OR e NOT esiste la gerarchia: 1) NOT, 2) AND, 3) ORFra le operazioni logiche AND, OR e NOT esiste la gerarchia: 1) NOT, 2) AND, 3) OR La gerarchia prima descritta consente di ridurre l’uso di parentesi nelle funzioni logicheLa gerarchia prima descritta consente di ridurre l’uso di parentesi nelle funzioni logiche
11
A.S.E.9.11 Tabella di Verità 1 Una funzione logica può sempre essere espressa da una tabella che prende il nome di:Una funzione logica può sempre essere espressa da una tabella che prende il nome di: TABELLA DI VERITÀ (TRUTH TABLE) OsservazioneOsservazione Una funzione di “n” variabili ammette 2 n possibili configurazioniUna funzione di “n” variabili ammette 2 n possibili configurazioni Una funzione di “n” variabili è completamente descritta da una tabella che ha sulla sinistra le 2 n possibili configurazioni degli ingressi e a destra i valori (0 o1) a secondo del valore della funzioneUna funzione di “n” variabili è completamente descritta da una tabella che ha sulla sinistra le 2 n possibili configurazioni degli ingressi e a destra i valori (0 o1) a secondo del valore della funzione
12
A.S.E.9.12 Tabella di verità 2 Funzione di tre variabiliFunzione di tre variabilixyzu000 f (0,0,0) 001 f (0,0,1) 010 f (0,1,0) 011 f (0,1,1) 100 f (1,0,0) 101 f (1,0,1) 110 f (1,1,0) 111 f (1,1,1)
13
A.S.E.9.13 Esempio xyzxy x + y x + z (x + y )(x + z ) yzu0001111101 0011111101 0101001000 0111001011 1000110000 1010111101 1100010000 1110011111
14
A.S.E.9.14 Passo 1 xyzxy x + y x + z (x + y )(x + z ) yzu0001111101 0011111101 0101001000 0111001011 1000110000 1010111101 1100010000 1110011111
15
A.S.E.9.15 Passo 2 xyzxy x + y x + z (x + y )(x + z ) yzu0001111101 0011111101 0101001000 0111001011 1000110000 1010111101 1100010000 1110011111
16
A.S.E.9.16 Passo 3 xyzxy x + y x + z (x + y )(x + z ) yzu0001111101 0011111101 0101001000 0111001011 1000110000 1010111101 1100010000 1110011111
17
A.S.E.9.17 Passo 4 xyzxy x + y x + z (x + y )(x + z ) yzu0001111101 0011111101 0101001000 0111001011 1000110000 1010111101 1100010000 1110011111
18
A.S.E.9.18 Passo 5 xyzxy x + y x + z (x + y )(x + z ) yzu0001111101 0011111101 0101001000 0111001011 1000110000 1010111101 1100010000 1110011111
19
A.S.E.9.19 Passo 6 xyzxy x + y x + z (x + y )(x + z ) yzu0001111101 0011111101 0101001000 0111001011 1000110000 1010111101 1100010000 1110011111
20
A.S.E.9.20 Finexyzxy x + y x + z (x + y )(x + z ) yzu0001111101 0011111101 0101001000 0111001011 1000110000 1010111101 1100010000 1110011111
21
A.S.E.9.21 Osservazione La tabella di verità consente di provare la veridicità di una relazione logica, poiché verifica se la relazione è vera per TUTTE le possibili combinazioni dei valori delle variabiliLa tabella di verità consente di provare la veridicità di una relazione logica, poiché verifica se la relazione è vera per TUTTE le possibili combinazioni dei valori delle variabili Tale metodo prende il nome diTale metodo prende il nome di Metodo dell’INDUZIONE PERFETTEMetodo dell’INDUZIONE PERFETTE
22
A.S.E.9.22 Teorema 8 (dimostrazione) 8a8b8a8bxyx+y ( x+y) xy x y 0001111 0110100 1010010 1110000 xy ( x y) xy x + y 0001111 0101101 1001011 1110000
23
A.S.E.9.23 Tabella dei Prodotti e delle Somme n = 3 nxyzps 0000 x y z p0p0p0p01 x + y + z s0s0s0s00 1001 x y z p1p1p1p11 x + y + z s1s1s1s10 2010 x y z p2p2p2p21 x + y + z s2s2s2s20 3011 x y z p3p3p3p31 x + y + z s3s3s3s30 4100 x y z p4p4p4p41 x + y + z s4s4s4s40 5101 x y z p5p5p5p51 x + y + z s5s5s5s50 6110 x y z p6p6p6p61 x + y + z s6s6s6s60 7111 x y z p7p7p7p71 x + y + z s7s7s7s70
24
A.S.E.9.24 Definizioni MINTERMINE “p i ” è una funzione (prodotto) che vale “1” in corrispondenza alla sola configurazione “i ” di valori delle variabiliMINTERMINE “p i ” è una funzione (prodotto) che vale “1” in corrispondenza alla sola configurazione “i ” di valori delle variabili MAXTERMINE “s i ” è una funzione (somma) che vale “0” in corrispondenza alla sola configurazione “i ” di valori delle variabiliMAXTERMINE “s i ” è una funzione (somma) che vale “0” in corrispondenza alla sola configurazione “i ” di valori delle variabili
25
A.S.E.9.25 Forma Canonica “Somma di Prodotti” “SP” xyzu 0001 p0p0p0p0 0011 p1p1p1p1 0100 0111 p3p3p3p3 1000 1011 p5p5p5p5 1100 1111 p7p7p7p7
26
A.S.E.9.26 Forma Canonica “Prodotto di Somme” “PS” xyzu 0001 0011 0100 s2s2s2s2 0111 1000 s4s4s4s4 1011 1100 s6s6s6s6 1111
27
A.S.E.9.27 Osservazioni La legittimità di rappresentare le funzioni nella forma canonica “SP” o “PS” deriva direttamente dalle proprietà delle operazioni OR, AND, NOTLa legittimità di rappresentare le funzioni nella forma canonica “SP” o “PS” deriva direttamente dalle proprietà delle operazioni OR, AND, NOT Una stessa funzione logica può essere scritta in molta formeUna stessa funzione logica può essere scritta in molta forme La manipolazioni delle espressioni booleane si basa sui teoremiLa manipolazioni delle espressioni booleane si basa sui teoremi
28
A.S.E.9.28 Conclusioni Algebra BOLEANAAlgebra BOLEANA Insieme di elementiInsieme di elementi Variabili, costantiVariabili, costanti Insieme di operazioniInsieme di operazioni Insieme di postulatiInsieme di postulati Espressioni algebricheEspressioni algebriche Tabella di veritàTabella di verità Espressione algebrica vs. Tabella di veritàEspressione algebrica vs. Tabella di verità Tabella di verità vs. Espressione algebricaTabella di verità vs. Espressione algebrica
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.